日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          1)討論的單調(diào)性;

          2)設(shè)的導(dǎo)函數(shù)為,若有兩個(gè)不相同的零點(diǎn)

          求實(shí)數(shù)的取值范圍;

          證明:

          【答案】(1)見解析(2)①,②見解析

          【解析】

          (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;

          (2)①通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)的零點(diǎn)個(gè)數(shù)確定a的范圍即可;

          ②問題轉(zhuǎn)化為證,即證,設(shè)函數(shù),根據(jù)函數(shù)的單調(diào)性證明即可.

          1的定義域?yàn)?/span>,且

          當(dāng)時(shí),成立,所以為增函數(shù);

          當(dāng)時(shí),

          i)當(dāng)時(shí),,所以上為增函數(shù);

          ii)當(dāng)時(shí),,所以上為減函數(shù).

          2)①由(1)知,當(dāng)時(shí),至多一個(gè)零點(diǎn),不合題意;

          當(dāng)時(shí),的最小值為,

          依題意知 ,解得

          一方面,由于,為增函數(shù),且函數(shù)的圖

          象在上不間斷.

          所以上有唯一的一個(gè)零點(diǎn).

          另一方面, 因?yàn)?/span>,所以

          ,令,

          當(dāng)時(shí),

          所以

          ,為減函數(shù),且函數(shù)的圖象在上不間斷.

          所以有唯一的一個(gè)零點(diǎn).

          綜上,實(shí)數(shù)的取值范圍是

          ②設(shè)

          下面證明

          不妨設(shè),由①知

          要證,即證

          因?yàn)?/span>,上為減函數(shù),

          所以只要證

          ,即證

          設(shè)函數(shù)

          所以,所以為增函數(shù).

          所以,所以成立.

          從而成立.

          所以,即成立.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時(shí)間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

          男職工

          女職工

          總計(jì)

          每周平均上網(wǎng)時(shí)間不超過4個(gè)小時(shí)

          每周平均上網(wǎng)時(shí)間超過4個(gè)小時(shí)

          70

          總計(jì)

          300

          (Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?

          (Ⅱ)根據(jù)這300個(gè)樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,.試估計(jì)該公司職工每周平均上網(wǎng)時(shí)間超過4小時(shí)的概率是多少?

          (Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時(shí)間超過4個(gè)小時(shí).請將每周平均上網(wǎng)時(shí)間與性別的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為“該公司職工的每周平均上網(wǎng)時(shí)間與性別有關(guān)”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

          求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;

          若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為為參數(shù)),為過點(diǎn)的兩條直線,,兩點(diǎn),,兩點(diǎn),且的傾斜角為,.

          (1)求的極坐標(biāo)方程;

          (2)當(dāng)時(shí),求點(diǎn),,四點(diǎn)的距離之和的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn),直線,則

          1關(guān)于的對稱點(diǎn)的坐標(biāo)________;

          2關(guān)于的對稱直線方程________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了更好地服務(wù)民眾,某共享單車公司通過向共享單車用戶隨機(jī)派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎(jiǎng)券、獲得2元獎(jiǎng)券的概率分別是0.5、0.2,且各次獲取騎行券的結(jié)果相互獨(dú)立.

          (I)求用戶騎行一次獲得0元獎(jiǎng)券的概率;

          (II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線的焦點(diǎn)為,其準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作斜率為的直線交拋物線于兩點(diǎn),若,則的值為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為直徑的圓上每一點(diǎn)都染上了紅、黃、藍(lán)三色之一,已知、染上了紅色,聯(lián)結(jié)圓上的點(diǎn)組成三角形,給出4個(gè)結(jié)論:

          ①必定存在一個(gè)直角三角形,三個(gè)頂點(diǎn)同為紅色;

          ②必定存在一個(gè)直角三角形,三個(gè)頂點(diǎn)同色;

          ③必定存在一個(gè)直角三角形,三個(gè)頂點(diǎn)全不同色;

          ④必定存在一個(gè)直角三角形,或都三個(gè)頂點(diǎn)同色,或者三個(gè)頂點(diǎn)全不同色。

          則真命題的個(gè)數(shù)是( )個(gè)。

          A. 1 B. 2

          C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求所有的正整數(shù)、、,使得是整數(shù)。

          查看答案和解析>>

          同步練習(xí)冊答案