【題目】已知函數(shù),
.
(1)求過點(diǎn)且與曲線
相切的直線方程;
(2)設(shè),其中
為非零實數(shù),若
有兩個極值點(diǎn)
,且
,求證:
.
【答案】(1);(2)證明見解析
【解析】
(1)設(shè)切點(diǎn)為,對函數(shù)
求導(dǎo),可得到切線斜率
,再結(jié)合
,二者聯(lián)立可求出切點(diǎn)坐標(biāo),及
的值,進(jìn)而可求得切線方程;
(2)對函數(shù)求導(dǎo),分
,
和
三種情況,分別討論函數(shù)的單調(diào)性,可知當(dāng)
時,
有兩個極值點(diǎn),從而可得到
,再結(jié)合
,
,從而要證
,只需證明
即可,構(gòu)造函數(shù)
,利用導(dǎo)函數(shù)證明
,即可證明結(jié)論成立.
(1)由,可得
,
設(shè)切點(diǎn)為,則切線斜率為
,
,
故,解得
,故
,
所以切線方程為,即
.
(2),
,
則,
①當(dāng),即
時,
,函數(shù)
在
上單調(diào)遞增,無極值點(diǎn),不符合題意;
②當(dāng)時,令
,則
,解得
不成立,舍去,
成立,此時
在
上單調(diào)遞減,在
上單調(diào)遞增,只有一個極值點(diǎn),不符合題意;
③當(dāng)時,令
,則
,解得
成立,
成立,此時函數(shù)
有兩個極值點(diǎn),且
,
,
易知,故
,
又,故
,
所以要證,即證
,
由,可知
,
故只需證明即可,
構(gòu)造函數(shù),則
,故函數(shù)
在
上單調(diào)遞增,
∴,即
成立,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于
分的選手將直接參加競賽選拔賽.已知成績合格的
名參賽選手成績的頻率分布直方圖如圖所示,其中
的頻率構(gòu)成等比數(shù)列.
(1)求的值;
(2)估計這名參賽選手的平均成績;
(3)根據(jù)已有的經(jīng)驗,參加競賽選拔賽的選手能夠進(jìn)入正式競賽比賽的概率為,假設(shè)每名選手能否通過競賽選拔賽相互獨(dú)立,現(xiàn)有
名選手進(jìn)入競賽選拔賽,記這
名選手在競賽選拔賽中通過的人數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2,點(diǎn)E、F、M分別為C1D1,A1D1,B1C1的中點(diǎn),過點(diǎn)M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)
(2)在圖2中,求證:D1B⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,對每一個正整數(shù)
,該數(shù)列前
項的最大值記為
,第
項之后各項
的最小值記為
,記
.
(1)若數(shù)列的通項公式為
,求數(shù)列
的通項公式;
(2)證明:“數(shù)列單調(diào)遞增”是“
”的充要條件;
(3)若對任意
恒成立,證明:數(shù)列
的通項公式為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C:(
)的焦點(diǎn)F到直線
的距離為
.AB是過拋物線C焦點(diǎn)F的動弦,O是坐標(biāo)原點(diǎn),過A,B兩點(diǎn)分別作此拋物線的切線,兩切線相交于點(diǎn)P.
(1)求證:.
(2)若動弦AB不經(jīng)過點(diǎn),直線AB與準(zhǔn)線l相交于點(diǎn)N,記MA,MB,MN的斜率分別為
,
,
.問:是否存在常數(shù)λ,使得
在弦AB運(yùn)動時恒成立?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】談祥柏先生是我國著名的數(shù)學(xué)科普作家,他寫的《數(shù)學(xué)百草園》、《好玩的數(shù)學(xué)》、《故事中的數(shù)學(xué)》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數(shù)學(xué)》中談老的一篇文章《五分鐘內(nèi)挑出埃及分?jǐn)?shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分?jǐn)?shù)(稱為埃及分?jǐn)?shù)).如用兩個埃及分?jǐn)?shù)與
的和表示
等.從
這100個埃及分?jǐn)?shù)中挑出不同的3個,使得它們的和為1,這三個分?jǐn)?shù)是________.(按照從大到小的順序排列)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,
,且
.
(1)的通項公式為__________;
(2)在、
、
、
、
這
項中,被
除余
的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)寫出的普通方程和
的直角坐標(biāo)方程;
(2)若與
相交于
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求
的最大值點(diǎn)
;
(2)以(1)中確定的作為
的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量
,求每盤游戲出現(xiàn)音樂的概率
,及隨機(jī)變量
的期望
;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計的相關(guān)知識分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com