【題目】四棱錐中,底面
為矩形,
.側(cè)面
底面
.
(1)證明: ;
(2)設(shè)與平面
所成的角為
,求二面角
的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】【試題分析】(1)設(shè)中點(diǎn)為
,連接
,由已知
,所以
,根據(jù)面面垂直的性質(zhì)定理,有
平面
,以
為原點(diǎn),
為
軸,
為
軸,建立空間直角坐標(biāo)系,計(jì)算
可得證.(2)設(shè)
,利用直線
和平面
所成角為
,計(jì)算
,再利用平面
和平面
的法向量計(jì)算二面角的余弦值.
【試題解析】
解:(1)證法一:設(shè)中點(diǎn)為
,連接
,
由已知,所以
,
而平面平面
,交線為
故平面
以為原點(diǎn),
為
軸,
為
軸,如圖建立空間直角坐標(biāo)系,并設(shè)
,
則
所以
,所以
.
證法二:設(shè)中點(diǎn)為
,連接
,由已知
,所以
,
而平面平面
,交線為
故平面
,從而
①
在矩形中,連接
,設(shè)
與
交于
,
則由知
,所以
所以,故
②
由①②知平面
所以.
(2)由,平面
平面
,交線為
,可得
平面
,
所以平面平面
,交線為
過(guò)作
,垂足為
,則
平面
與平面
所成的角即為角
所以
從而三角形為等邊三角形,
(也可以用向量法求出,設(shè)
,則
,可求得平面
的一個(gè)法向量為
,而
,由
可解得
)
設(shè)平面的一個(gè)法向量為
,則
,
, 可取
設(shè)平面的一個(gè)法向量為
,則
,
,可取
于是,
故二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)
(
的值精確到0.01);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,
的學(xué)生中抽取9名參加座談會(huì).
(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由;
(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫(xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類專業(yè)”有關(guān)?
閱讀時(shí)間不足8.5小時(shí) | 閱讀時(shí)間超過(guò)8.5小時(shí) | |
理工類專業(yè) | 40 | 60 |
非理工類專業(yè) |
附:(
).
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
<>![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),我國(guó)農(nóng)村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的下降到2018年底的
,創(chuàng)造了人類減貧史上的中國(guó)奇跡,為全球減貧事業(yè)貢獻(xiàn)了中國(guó)智慧和中國(guó)方案.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例.2012年至2018年我國(guó)貧困發(fā)生率的數(shù)據(jù)如表:
年份( | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的7個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;
(2)設(shè)年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預(yù)測(cè)2019年的貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸)中,直線
的方程為
.
(1)求圓的普通方程及直線
的直角坐標(biāo)方程;
(2)設(shè)直線與圓
相交于
、
兩點(diǎn),與
軸交于
點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線:
,直線
的斜率為2.
(Ⅰ)若與
相切,求直線
的方程;
(Ⅱ)若與
相交于
,
,線段
的中垂線交
于
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)到拋物線
的焦點(diǎn)
的距離和它到直線
的距離之比是
.
(1)求點(diǎn)的軌跡
的方程;
(2)過(guò)圓:
上任意一點(diǎn)
作圓的切線
與軌跡
交于
,
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:
,當(dāng)
',
時(shí),
(其中
表示
,
,…,
中的最大項(xiàng)),有以下結(jié)論:
① 若數(shù)列是常數(shù)列,則
;
② 若數(shù)列是公差
的等差數(shù)列,則
;
③ 若數(shù)列是公比為
的等比數(shù)列,則
:
④ 若存在正整數(shù),對(duì)任意
,都有
,則
,是數(shù)列
的最大項(xiàng).
其中正確結(jié)論的序號(hào)是____(寫(xiě)出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著節(jié)能減排意識(shí)深入人心以及共享單車(chē)在饒城的大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車(chē)。為了研究廣大市民在共享單車(chē)上的使用情況,某公司在我市隨機(jī)抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計(jì) | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認(rèn)為每周使用超過(guò)3次的用戶為“喜歡騎行共享單車(chē)”,請(qǐng)完成列表(見(jiàn)答題卡),并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車(chē)”與性別有關(guān)?
(2)每周騎行共享單車(chē)6次及6次以上的用戶稱為“騎行達(dá)人”,視頻率為概率,在我市所有“騎行達(dá)人”中,隨機(jī)抽取4名用戶.
① 求抽取的4名用戶中,既有男生“騎行達(dá)人”又有女“騎行達(dá)人”的概率;
②為了鼓勵(lì)女性用戶使用共享單車(chē),對(duì)抽出的女“騎行達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求
的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為1的正方體中,E,F(xiàn)分別為線段CD和
上的動(dòng)點(diǎn),且滿足
,則四邊形
所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。
A. 有最小值B. 有最大值
C. 為定值3D. 為定值2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com