日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
          (Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2 +1],求cos2θ的值.

          【答案】解:(Ⅰ)函數(shù)f(x)=4sinx(cosx﹣sinx)+3

          =4sinxcosx﹣4sin2x+3

          =2sin2x﹣4× +3

          =2sin2x+2cos2x+1

          =2 sin(2x+ )+1,

          令2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,

          解得kπ+ ≤x≤kπ+ ,k∈Z,

          又x∈(0,π),

          所以f(x)的單調(diào)遞減區(qū)間是[ , ];

          (Ⅱ)由f(x)=2 sin(2x+ )+1在[0,θ]上的值域?yàn)閇0,2 +1],

          令x=0,得f(0)=2 sin +1=3;

          令f(x)=2 +1,得sin(2x+ )=1,

          解得x= ,∴θ> ;

          令f(x)=0,得sin(2x+ )=﹣

          ∴2x+ ,

          解得x< ,即θ< ;

          ∴θ∈( ),

          ∴2θ+ ∈( , );

          由2 sin(2θ+ )+1=0,

          得sin(2θ+ )=﹣ ,

          所以cos(2θ+ )=﹣ =﹣ ,

          所以cos2θ=cos[(2θ+ )﹣ ]

          =cos(2θ+ )cos +sin(2θ+ )sin

          =﹣ × +(﹣ )×

          =﹣


          【解析】(Ⅰ)化簡(jiǎn)函數(shù)f(x)為正弦型函數(shù),根據(jù)正弦函數(shù)的圖象與性質(zhì)即可求出f(x)的單調(diào)減區(qū)間;(Ⅱ)根據(jù)題意,求出sin(2θ+ )的值,再根據(jù)同角的三角函數(shù)關(guān)系和三角恒等變換求出cos2θ的值.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調(diào)性的相關(guān)知識(shí)可以得到問題的答案,需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為 . (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△AOB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知實(shí)數(shù)集R,集合A={x|1<x<3},集合B={x|y= },則A∩(RB)=(
          A.{x|1<x≤2}
          B.{x|1<x<3}
          C.{x|2≤x<3}
          D.{x|1<x<2}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B、P在單位圓上,且B(﹣ , ),∠AOB=α.
          (1)求 的值;
          (2)設(shè)∠AOP=θ( ≤θ≤ ), = + ,四邊形OAQP的面積為S,f(θ)=( 2+2S2 ,求f(θ)的最值及此時(shí)θ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣x2 , 若存在實(shí)數(shù)a,b,使f(x)在[a,b]上的值域?yàn)閇 ],則ab=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y= 的定義域是(
          A.[1,+∞)
          B.(1,+∞)
          C.(0,1]
          D.( ,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義min{a,b}= ,若函數(shù)f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在區(qū)間[m,n]上的值域?yàn)閇 , ],則區(qū)間[m,n]長(zhǎng)度的最大值為(
          A.1
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列各組中的函數(shù)f(x),g(x)表示同一函數(shù)的是(
          A.f(x)=x,g(x)=
          B.f(x)=x+1,g(x)=
          C.f(x)=|x|,g(x)=
          D.f(x)=log22x , g(x)=2log2x

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對(duì)稱.
          (1)若f(g(x))=6﹣x2 , 求實(shí)數(shù)x的值;
          (2)若函數(shù)y=g(f(x2))的定義域?yàn)閇m,n](m≥0),值域?yàn)閇2m,2n],求實(shí)數(shù)m,n的值;
          (3)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案