日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱.
          (1)若f(g(x))=6﹣x2 , 求實(shí)數(shù)x的值;
          (2)若函數(shù)y=g(f(x2))的定義域?yàn)閇m,n](m≥0),值域?yàn)閇2m,2n],求實(shí)數(shù)m,n的值;
          (3)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a).

          【答案】
          (1)解:∵函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,

          ∴g(x)= ,

          ∵f(g(x))=6﹣x2

          =6﹣x2=x,

          即x2+x﹣6=0,

          解得x=2或x=﹣3(舍去),

          故x=2,


          (2)解:y=g(f(x2))= =x2,

          ∵定義域?yàn)閇m,n](m≥0),值域?yàn)閇2m,2n],

          解得m=0,n=2,


          (3)解:令t=( x,

          ∵x∈[﹣1,1],

          ∴t∈[ ,2],

          則y=[f(x)]2﹣2af(x)+3等價(jià)為y=m(t)=t2﹣2at+3,

          對稱軸為t=a,

          當(dāng)a< 時(shí),函數(shù)的最小值為h(a)=m( )= ﹣a;

          當(dāng) ≤a≤2時(shí),函數(shù)的最小值為h(a)=m(a)=3﹣a2;

          當(dāng)a>2時(shí),函數(shù)的最小值為h(a)=m(2)=7﹣4a;

          故h(a)=


          【解析】(1)根據(jù)函數(shù)的對稱性即可求出g(x),即可得到f(g(x))=x,解得即可.(2)先求出函數(shù)的解析式,得到 ,解得m=0,n=2,(3)由x∈[﹣1,1]可得t∈[ ,2],結(jié)合二次函數(shù)的圖象和性質(zhì),對a進(jìn)行分類討論,即可得到函數(shù)y=f2(x)﹣2af(x)+3的最小值h(a)的表達(dá)式.
          【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
          (Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2 +1],求cos2θ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象(
          A.向左移動 個(gè)單位
          B.向右移動 個(gè)單位
          C.向左移動1個(gè)單位
          D.向右移動1個(gè)單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中,a1=2,a2=6,且數(shù)列{an1﹣an}{n∈N*}是公差為2的等差數(shù)列.
          (1)求{an}的通項(xiàng)公式;
          (2)記數(shù)列{ }的前n項(xiàng)和為Sn , 求滿足不等式Sn 的n的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)代城市大多是棋盤式布局(如上海道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1 , y1)、B(x2 , y2)兩點(diǎn)間的“直角距離”為:DAB)=|x1﹣x2|+|y1﹣y2|.

          (1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”
          為2的“格點(diǎn)”的坐標(biāo);(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
          (2)定義:“圓”是所有到定點(diǎn)“直角距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3),B(1,1),C(3,3),求經(jīng)過這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫出大致圖象;
          (3)設(shè)P(x,y),集合B表示的是所有滿足DPO≤1的點(diǎn)P所組成的集合,
          點(diǎn)集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
          求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的區(qū)域的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方體ABCD﹣A1B1C1D1中,AB=2,點(diǎn)E是BC的中點(diǎn).

          (1)求線段DE的長;
          (2)求直線A1E與平面ADD1A1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且2csinB= b.
          (1)求角C的大;
          (2)若邊c=1,求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點(diǎn),若存在求出直線的方程l,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底數(shù),e=2.71828…).
          (1)證明:函數(shù)f(x)為奇函數(shù);
          (2)判斷并證明函數(shù)f(x)的單調(diào)性,再根據(jù)結(jié)論確定f(m2﹣m+1)+f(﹣ )與0的大小關(guān)系;
          (3)是否存在實(shí)數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域?yàn)閇kea , keb].若存在,求出實(shí)數(shù)k的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案