日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知函數.

          1)若,求的最小值;

          2)若,且,證明:.

          【答案】1;(2)證明見解析

          【解析】

          1)當,,先求導可得,,利用導函數可判斷上單調遞增,由,即可判斷的單調性,進而求解;

          2)先求導可得,容易得到上單調遞增,由,即可判斷上單調遞減,在上單調遞增,,則,,,利用導函數可判斷上單調遞增,,,則可得,,進而由的單調性求證即可.

          1)解:當時,,

          所以,

          ,則,所以上單調遞增,

          上單調遞增,

          因為,

          所以當時,;當時,,

          因此上單調遞減,在上單調遞增,

          所以.

          2)證明:,則,所以上單調遞增,因為,

          所以當時,;當時,,

          因此,上單調遞減,在上單調遞增,

          ,不妨設,則,,

          ,

          時,

          ,所以上單調遞增;

          所以當時,時,,

          因此,

          ,所以,

          因為,,上單調遞增,

          所以,即,故.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】某地開發(fā)一片荒地,如圖,荒地的邊界是以C為圓心,半徑為1千米的圓周.已有兩條互相垂直的道路OEOF,分別與荒地的邊界有且僅有一個接觸點A,B.現(xiàn)規(guī)劃修建一條新路(由線段MP,線段QN三段組成),其中點M,N分別在OE,OF上,且使得MP,QN所在直線分別與荒地的邊界有且僅有一個接觸點P,Q,所對的圓心角為.記∠PCA(道路寬度均忽略不計).

          1)若,求QN的長度;

          2)求新路總長度的最小值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在平面直角坐標系中,直線的參數方程為t為參數,).在以坐標原點為極點、x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為

          1)若點在直線l上,求線l的直角坐標方程和曲線C的直角坐標方程;

          2)已知,點P在直線l上,點Q在曲線C上,且的最小值為,求a的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SP、TP的斜率之積為.

          1)求動點P的軌跡E的方程;

          2)設點B為軌跡Ey軸正半軸的交點,是否存在直線l,使得l交軌跡EM,N兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知數集,其中,且,若對,兩數中至少有一個屬于,則稱數集具有性質.

          1)分別判斷數集與數集是否具有性質,說明理由;

          2)已知數集具有性質,判斷數列,,,是否為等差數列,若是等差數列,請證明;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在四棱錐中,底面是菱形,,是棱的中點,.

          1)證明:平面;

          2)設是線段的中點,且平面,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】F2是雙曲線的右焦點,動點A在雙曲線左支上,直線l1txy+t20與直線l2x+ty+2t10的交點為B,則|AB|+|AF2|的最小值為(

          A.8B.C.9D.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】紅鈴蟲(Pectinophora gossypiella)是棉花的主要害蟲之一,其產卵數與溫度有關.現(xiàn)收集到一只紅鈴蟲的產卵數y(個)和溫度x(℃)的8組觀測數據,制成圖1所示的散點圖.現(xiàn)用兩種模型①,②分別進行擬合,由此得到相應的回歸方程并進行殘差分析,進一步得到圖2所示的殘差圖.

          根據收集到的數據,計算得到如下值:

          25

          2.89

          646

          168

          422688

          48.48

          70308

          表中;;

          1)根據殘差圖,比較模型①、②的擬合效果,應選擇哪個模型?并說明理由;

          2)根據(1)中所選擇的模型,求出y關于x的回歸方程(系數精確到0.01),并求溫度為34℃時,產卵數y的預報值.

          (參考數據:,,

          附:對于一組數據,,,其回歸直線的斜率和截距的最小二乘估計分別為,.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】《中國制造2025》是經國務院總理李克強簽批,由國務院于20155月印發(fā)的部署全面推進實施制造強國的戰(zhàn)略文件,是中國實施制造強國戰(zhàn)略第一個十年的行動綱領.制造業(yè)是國民經濟的主體,是立國之本、興國之器、強國之基.發(fā)展制造業(yè)的基本方針為質量為先,堅持把質量作為建設制造強國的生命線.某制造企業(yè)根據長期檢測結果,發(fā)現(xiàn)生產的產品質量與生產標準的質量差都服從正態(tài)分布Nμ,σ2),并把質量差在(μσ,μ+σ)內的產品為優(yōu)等品,質量差在(μ+σ,μ+2σ)內的產品為一等品,其余范圍內的產品作為廢品處理.優(yōu)等品與一等品統(tǒng)稱為正品.現(xiàn)分別從該企業(yè)生產的正品中隨機抽取1000件,測得產品質量差的樣本數據統(tǒng)計如下:

          1)根據頻率分布直方圖,求樣本平均數

          2)根據大量的產品檢測數據,檢查樣本數據的方差的近似值為100,用樣本平均數作為μ的近似值,用樣本標準差s作為σ的估計值,求該廠生產的產品為正品的概率.(同一組中的數據用該組區(qū)間的中點值代表)

          [參考數據:若隨機變量ξ服從正態(tài)分布Nμ,σ2),則:Pμσξμ+σ≈0.6827,Pμ2σξμ+2σ≈0.9545Pμ3σξμ+3σ≈0.9973

          3)假如企業(yè)包裝時要求把3件優(yōu)等品球和5件一等品裝在同一個箱子中,質檢員每次從箱子中摸出三件產品進行檢驗,記摸出三件產品中優(yōu)等品球的件數為X,求X的分布列以及期望值.

          查看答案和解析>>

          同步練習冊答案