日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 曲線y=lnx在點(1,0)處的切線與坐標(biāo)軸圍成的三角形的面積是( 。
          A.
          3
          4
          B.
          4
          5
          C.
          1
          4
          D.
          1
          2
          ∵y=lnx,
          ∴y′=
          1
          x
          ,
          ∴曲線y=lnx在點(1,0)處的切線斜率k=1,
          ∴切線方程為:y-0=x-1),
          即y=x-1,
          令x=0得,y=-1;令y=0得,x=1,
          ∴曲線y=lnx在點(1,0)處的切線與坐標(biāo)軸圍成的三角形的面積是
          1
          2
          •1•1
          =
          1
          2

          故選D.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)曲線f(x)=
          1
          3
          x3-
          a
          2
          x2+1
          (其中a>0)在點(x1,f(x1))及(x2,f(x2))處的切線都過點(0,2).證明:當(dāng)x1≠x2時,f′(x1)≠f′(x2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=
          1
          x
          ,g(x)=f(x)+f′(x).則g(x)的最小值是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù)f(x)=x3+3bx2+3cx在兩個極值點x1、x2,且x1∈[-1,0],x2∈[1,2].
          (1)求b、c滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫出滿足這些條件的點(b,c)的區(qū)域;
          (2)證明:-10≤f(x2)≤-
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          曲線y=ex+1在點A(0,1)處的切線斜率為(  )
          A.1B.2C.eD.
          1
          e

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          己知函數(shù)f(x)=ax3+bx2+c,其導(dǎo)數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)的極大值是( 。
          A.a(chǎn)+b+cB.8a+4b+cC.3a+2bD.c

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=ex(ax+b),曲線y=f(x)經(jīng)過點P(0,2),且在點P處的切線為l:y=4x+2.
          (1)求常數(shù)a,b的值;
          (2)求證:曲線y=f(x)和直線l只有一個公共點;
          (3)是否存在常數(shù)k,使得x∈[-2,-1],f(x)≥k(4x+2)恒成立?若存在,求常數(shù)k的取值范圍;若不存在,簡要說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線lAB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知f(x)=2x3-6x+m(m為常數(shù)),在[0,2]上有最大值3,那么此函數(shù)在[0,2]上的最小值為( 。
          A.-1B.-3C.-5D.5

          查看答案和解析>>

          同步練習(xí)冊答案