日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點(diǎn)在底面上的射影為底面的中心點(diǎn),點(diǎn)在棱上,且的面積為1.

          1)若點(diǎn)的中點(diǎn),求證:平面平面

          2)在棱上是否存在一點(diǎn)使得二面角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,說明理由.

          【答案】(1)證明見解析;(2)存在點(diǎn)符合題意,點(diǎn)為棱靠近端點(diǎn)的三等分點(diǎn)

          【解析】

          1)利用等腰三角形“三線合一”證明平面,進(jìn)而證明平面平面;

          2)分別以軸,軸,軸建立空間直角坐標(biāo)系,設(shè),利用平面的法向量求二面角,進(jìn)而計算得到即可

          (1)∵點(diǎn)在底面上的射影為點(diǎn),∴平面,

          ∵四邊形是邊長為的正方形,∴,

          三角形的面積為1,∴,,∴,

          ,點(diǎn)的中點(diǎn),

          ,同理可得,

          又因為,平面,

          平面,

          平面,

          ∴平面平面

          (2)存在,

          如圖,連接,易得兩兩互相垂直,

          分別以軸,軸,軸建立空間直角坐標(biāo)系,

          ,假設(shè)存在點(diǎn)使得二面角的余弦值為,

          不妨設(shè),

          ∵點(diǎn)在棱上,∴,

          ,

          ,

          ,

          ,,

          設(shè)平面的法向量為,則,,

          ,可得,∴平面的一個法向量為,

          又平面的一個法向量為,二面角的余弦值為,

          ,即,

          解得(舍)

          所以存在點(diǎn)符合題意,點(diǎn)為棱靠近端點(diǎn)的三等分點(diǎn)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】進(jìn)位制是人們?yōu)榱擞嫈?shù)和運(yùn)算方便而約定的計數(shù)系統(tǒng),“滿幾進(jìn)一”就是幾進(jìn)制,不同進(jìn)制之間可以相互轉(zhuǎn)化,例如把十進(jìn)制的89轉(zhuǎn)化為二進(jìn)制,根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用2連續(xù)去除89得商,然后取余數(shù),具體計算方法如下:

          把以上各步所得余數(shù)從下到上排列,得到89=1011001(2)這種算法叫做“除二取余法”,上述方法也可以推廣為把十進(jìn)制數(shù)化為k進(jìn)制數(shù)的方法,稱為“除k取余法”,那么用“除k取余法”把89化為七進(jìn)制數(shù)為_

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為響應(yīng)“文化強(qiáng)國建設(shè)”號召,并增加學(xué)生們對古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計劃建設(shè)一個古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計調(diào)查.統(tǒng)計顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44.

          (1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

          (2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語文教研組計劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會.經(jīng)過綜合考慮與對比,語文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.

          附:,其中.

          參考數(shù)據(jù):

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種商品在50個不同地區(qū)的零售價格全部介于13元與18元之間,將各地價格按如下方式分成五組:第一組,第二組,……,第五組.如圖是按上述分組方法得到的頻率分布直方圖.

          1)求價格落在內(nèi)的地區(qū)數(shù);

          2)借助頻率分布直方圖,估計該商品價格的中位數(shù)(精確到0.1);

          3)現(xiàn)從,這兩組的全部樣本數(shù)據(jù)中,隨機(jī)選取兩個地區(qū)的零售價格,記為,求事件的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的定義域為且滿足,當(dāng)時,.

          1)判斷上的單調(diào)性并加以證明;

          2)若方程有實數(shù)根,則稱為函數(shù)的一個不動點(diǎn),設(shè)正數(shù)為函數(shù)的一個不動點(diǎn),且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若,求函數(shù)處的切線方程;

          (2)令,討論函數(shù)的單調(diào)性;

          (3)當(dāng)時,,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),長軸在x軸上,長軸長是短軸長的2倍,兩焦點(diǎn)分別為,橢圓上一點(diǎn)到的距離之和為12.的圓心為.

          1)求的面積;

          2)若橢圓上所有點(diǎn)都在一個圓內(nèi),則稱圓包圍這個橢圓.問:是否存在實數(shù)k使得圓包圍橢圓?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)若,求實數(shù)取值的集合;

          (Ⅱ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)生產(chǎn)的產(chǎn)品具有60個月的時效性,在時效期內(nèi),企業(yè)投入50萬元經(jīng)銷該產(chǎn)品,為了獲得更多的利潤,企業(yè)將每月獲得利潤的10%再投入到次月的經(jīng)營中,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個產(chǎn)品的第個月的利潤是(單位:萬元),記第個月的當(dāng)月利潤率為,例.

          1)求第個月的當(dāng)月利潤率;

          2)求該企業(yè)在經(jīng)銷此產(chǎn)品期間,哪一個月的當(dāng)月利潤率最大,并求出該月的當(dāng)月利潤率.

          查看答案和解析>>

          同步練習(xí)冊答案