日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的焦點(diǎn)為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且,過,兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為.

          (1)若直線,軸分別交于點(diǎn),且的面積為,求的值;

          (2)記的面積為,求的最小值,并指出最小時(shí)對應(yīng)的點(diǎn)的坐標(biāo).

          【答案】(1)2;(2)有最小值4,此時(shí).

          【解析】

          1)先求出以點(diǎn)為切點(diǎn)的拋物線的切線方程,得出,利用面積求出點(diǎn)的縱坐標(biāo),然后求出。

          2)先分別寫出直線PA,PB方程,利用都過點(diǎn)P寫出直線,代入拋物線方程利用弦長公式求出,及點(diǎn)到直線的距離,寫出表達(dá)式及最值。

          (1)設(shè),,則,拋物線方程寫成,,則以點(diǎn)為切點(diǎn)的拋物線的切線的方程為:,又,即,, ,故 ,∴,,從而.

          (2)由(1)知,即:,同理,由直線,都過點(diǎn),即,則點(diǎn),的坐標(biāo)都滿足方程,

          即直線的方程為:,又由直線過點(diǎn),∴,

          聯(lián)立,

          ,

          點(diǎn)到直線的距離,

          當(dāng)且僅當(dāng)時(shí),有最小值4,此時(shí).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】祖暅(公元前5~6世紀(jì))是我國齊梁時(shí)代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等。設(shè)由橢圓 所圍成的平面圖形繞 軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知拋物線Cx2=4y的焦點(diǎn)為F,直線l與拋物線C交于A,B兩點(diǎn),延長AF交拋物線C于點(diǎn)D,若AB的中點(diǎn)縱坐標(biāo)為|AB|-1,則當(dāng)∠AFB最大時(shí),|AD|=( 。

          A. 4B. 8C. 16D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知棱柱的底面是菱形,且ABCD,,F為棱的中點(diǎn),M為線段的中點(diǎn).

          1)求證:ABCD;

          2)判斷直線MF與平面的位置關(guān)系,并證明你的結(jié)論;

          3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,,焦距為6.

          (1)求橢圓的方程.

          (2)過橢圓左頂點(diǎn)的兩條斜率之積為的直線分別與橢圓交于點(diǎn).試問直線是否過某定點(diǎn)?若過,求出該點(diǎn)的坐標(biāo);若不過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為改善人居環(huán)境,某區(qū)增加了對環(huán)境綜合治理的資金投入,已知今年治理環(huán)境(畝)與相應(yīng)的資金投入(萬元)的四組對應(yīng)數(shù)據(jù)的散點(diǎn)圖如圖所示,用最小二乘法得到關(guān)于的線性回歸方程.

          1)求的值,并預(yù)測今年治理環(huán)境10畝所需投入的資金是多少萬元?

          2)已知該區(qū)去年治理環(huán)境10畝所投入的資金為3.5萬元,根據(jù)(1)的結(jié)論,請你對該區(qū)環(huán)境治理給出一條簡短的評價(jià).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在梯形中,,的中點(diǎn),線段交于點(diǎn)(如圖1.沿折起到的位置,使得二面角為直二面角(如圖2.

          1)求證:平面

          2)線段上是否存在點(diǎn),使得與平面所成角的正弦值為?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

          (1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

          (2)請根據(jù)頻率分布直方圖,估計(jì)這100名志愿者樣本的平均數(shù);

          (3)在(1)的條件下,該市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某城市收集并整理了該市2017年1月份至10月份每月份最低氣溫與最高氣溫(單位:)的數(shù)據(jù),繪制了折線圖(如圖).已知該市每月的最低氣溫與當(dāng)月的最高氣溫兩變量具有較好的線性關(guān)系,則根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是()

          A. 最低氣溫低于的月份有個(gè)

          B. 月份的最高氣溫不低于月份的最高氣溫

          C. 月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在月份

          D. 每月份最低氣溫與當(dāng)月的最高氣溫兩變量為正相關(guān)

          查看答案和解析>>

          同步練習(xí)冊答案