【題目】已知拋物線的焦點(diǎn)為
,
,
是拋物線上的兩個(gè)動(dòng)點(diǎn),且
,過
,
兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為
.
(1)若直線與
,
軸分別交于點(diǎn)
,
,且
的面積為
,求
的值;
(2)記的面積為
,求
的最小值,并指出
最小時(shí)對應(yīng)的點(diǎn)
的坐標(biāo).
【答案】(1)2;(2)有最小值4,此時(shí)
.
【解析】
(1)先求出以點(diǎn)為切點(diǎn)的拋物線的切線
方程,得出
,
利用面積求出
點(diǎn)的縱坐標(biāo),然后求出
。
(2)先分別寫出直線PA,PB方程,利用都過點(diǎn)P寫出直線,代入拋物線方程利用弦長公式求出
,及點(diǎn)
到直線
的距離,寫出
表達(dá)式及最值。
(1)設(shè),
,
,則
,拋物線方程寫成
,
,則以點(diǎn)
為切點(diǎn)的拋物線的切線
的方程為:
,又
,即
,
,
,
,故
,∴
,
,從而
.
(2)由(1)知,即:
,同理
,由直線
,
都過點(diǎn)
,即
,則點(diǎn)
,
的坐標(biāo)都滿足方程
,
即直線的方程為:
,又由直線
過點(diǎn)
,∴
,
聯(lián)立得
,
,
點(diǎn)到直線
的距離
,
,
當(dāng)且僅當(dāng)時(shí),
有最小值4,此時(shí)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅(公元前5~6世紀(jì))是我國齊梁時(shí)代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等。設(shè)由橢圓 所圍成的平面圖形繞
軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知拋物線C:x2=4y的焦點(diǎn)為F,直線l與拋物線C交于A,B兩點(diǎn),延長AF交拋物線C于點(diǎn)D,若AB的中點(diǎn)縱坐標(biāo)為|AB|-1,則當(dāng)∠AFB最大時(shí),|AD|=( 。
A. 4B. 8C. 16D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知棱柱的底面是菱形,且
面ABCD,
,F為棱
的中點(diǎn),M為線段
的中點(diǎn).
(1)求證:面ABCD;
(2)判斷直線MF與平面的位置關(guān)系,并證明你的結(jié)論;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點(diǎn)分別為
,
,焦距為6.
(1)求橢圓的方程.
(2)過橢圓左頂點(diǎn)的兩條斜率之積為的直線分別與橢圓交于
點(diǎn).試問直線
是否過某定點(diǎn)?若過,求出該點(diǎn)的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為改善人居環(huán)境,某區(qū)增加了對環(huán)境綜合治理的資金投入,已知今年治理環(huán)境(畝)與相應(yīng)的資金投入
(萬元)的四組對應(yīng)數(shù)據(jù)的散點(diǎn)圖如圖所示,用最小二乘法得到
關(guān)于
的線性回歸方程
.
(1)求的值,并預(yù)測今年治理環(huán)境10畝所需投入的資金是多少萬元?
(2)已知該區(qū)去年治理環(huán)境10畝所投入的資金為3.5萬元,根據(jù)(1)的結(jié)論,請你對該區(qū)環(huán)境治理給出一條簡短的評價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中,
,
為
的中點(diǎn),線段
與
交于
點(diǎn)(如圖1).將
沿
折起到
的位置,使得二面角
為直二面角(如圖2).
(1)求證:平面
;
(2)線段上是否存在點(diǎn)
,使得
與平面
所成角的正弦值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡(單位:歲)分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)請根據(jù)頻率分布直方圖,估計(jì)這100名志愿者樣本的平均數(shù);
(3)在(1)的條件下,該市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市收集并整理了該市2017年1月份至10月份每月份最低氣溫與最高氣溫(單位:)的數(shù)據(jù),繪制了折線圖(如圖).已知該市每月的最低氣溫與當(dāng)月的最高氣溫兩變量具有較好的線性關(guān)系,則根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是()
A. 最低氣溫低于的月份有
個(gè)
B. 月份的最高氣溫不低于
月份的最高氣溫
C. 月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在月份
D. 每月份最低氣溫與當(dāng)月的最高氣溫兩變量為正相關(guān)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com