【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,上頂點(diǎn)為A,過(guò)
的直線
與y軸交于點(diǎn)M,滿足
(O為坐標(biāo)原點(diǎn)),且直線l與直線
之間的距離為
.
(1)求橢圓C的方程;
(2)在直線上是否存在點(diǎn)P,滿足
?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在兩個(gè)不同點(diǎn)P,滿足
【解析】
(1)根據(jù)直線方程求出和焦點(diǎn)
,計(jì)算出橢圓方程的基本量;
(2)求出滿足的點(diǎn)P的軌跡方程,將問(wèn)題轉(zhuǎn)化為考慮直線與曲線的交點(diǎn)個(gè)數(shù)問(wèn)題.
(1)設(shè)橢圓C的半焦距為c
因?yàn)橹本l的方程為,令
,得
,則點(diǎn)
,即
.
令,得
,則點(diǎn)
由,得
,解得
,所以
.
所以
所以橢圓C的方程為
(2)存在點(diǎn)P,滿足
因?yàn)橹本與直線
之間的距離為
,
所以,解得
或
因?yàn)?/span>,所以
舍去,故
故直線的方程為:
設(shè)直線上存在點(diǎn)
滿足
,且點(diǎn)
,
,
則
整理得,它表示圓心在
,半徑
的圓
因?yàn)閳A心到
的距離為
,所以
所以直線與圓
相交,
所以在直線存在兩個(gè)不同點(diǎn)P,滿足
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線x2=2py(p>0)的焦點(diǎn)為F(0,1),過(guò)F的兩條動(dòng)直線AB,CD與拋物線交出A、B、C、D四點(diǎn),直線AB,CD的斜率存在且分別是k1(k1>0),k2.
(Ⅰ)若直線BD過(guò)點(diǎn)(0,3),求直線AC與y軸的交點(diǎn)坐標(biāo)
(Ⅱ)若k1﹣k2=2,求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):
下列敘述錯(cuò)誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好
D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l: 橢圓C:
,
分別為橢圓的左右焦點(diǎn).
(1)當(dāng)直線l過(guò)右焦點(diǎn)時(shí),求C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOB是鈍角,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)命題的說(shuō)法正確的是___(請(qǐng)?zhí)顚懰姓_的命題序號(hào)).
①命題“若,則
”的否命題為:“若
,則
”;
②命題“若,則
”的逆否命題為真命題;
③條件,條件
,則
是
的充分不必要條件;
④已知時(shí),
,若
是銳角三角形,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】作家馬伯庸小說(shuō)《長(zhǎng)安十二時(shí)辰》中,靖安司通過(guò)長(zhǎng)安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個(gè)小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個(gè)紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)在2019年教師招聘考試中,參加、
、
、
四個(gè)崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性應(yīng)聘人數(shù) | 男性錄用人數(shù) | 男性錄用比例 | 女性應(yīng)聘人數(shù) | 女性錄用人數(shù) | 女性錄用比例 |
269 | 167 | 62% | 40 | 24 | 60% | |
217 | 69 | 32% | 386 | 121 | 31% | |
44 | 26 | 59% | 38 | 22 | 58% | |
3 | 2 | 67% | 3 | 2 | 67% | |
總計(jì) | 533 | 264 | 50% | 467 | 169 | 36% |
(1)從表中所有應(yīng)聘人員中隨機(jī)抽取1人,試估計(jì)此人被錄用的概率;
(2)將應(yīng)聘崗位的男性教師記為
,女性教師記為
,現(xiàn)從應(yīng)聘
崗位的6人中隨機(jī)抽取2人.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人性別不同”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的離心率為
,焦距為
.
(1)求的方程;
(2)若斜率為的直線
與橢圓
交于
,
兩點(diǎn)(點(diǎn)
,
均在第一象限),
為坐標(biāo)原點(diǎn).
①證明:直線的斜率依次成等比數(shù)列.
②若與
關(guān)于
軸對(duì)稱,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,設(shè)函數(shù)
,
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在整數(shù),對(duì)于任意
,關(guān)于
的方程
在區(qū)間
上有唯一實(shí)數(shù)解?若存在,求
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com