日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分13分)已知函數(shù)
          (1) 求函數(shù)的極值;
          (2)求證:當(dāng)時(shí),
          (3)如果,且,求證:

          (1) 當(dāng)時(shí),取得極大值= ;
          (2) ,則只需證當(dāng)時(shí),>0;
          (3) 由⑵的結(jié)論知時(shí),>0,∴
          ,∴
          ,∴。

          解析試題分析:⑴∵=,∴=            2分
          =0,解得



          1



          0



          極大值

          ∴當(dāng)時(shí),取得極大值=.            4分
          ⑵證明:,則
          =             6分 
          當(dāng)時(shí),<0,>2,從而<0,
          >0,是增函數(shù).
                      8分
          ⑶證明:∵內(nèi)是增函數(shù),在內(nèi)是減函數(shù).
          ∴當(dāng),且時(shí),、不可能在同一單調(diào)區(qū)間內(nèi).
          ,                                11分
          由⑵的結(jié)論知時(shí),>0,∴
          ,∴
          ,∴           13分
          考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
          點(diǎn)評:此題是個(gè)難題.主要考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用能力,具體涉及到用導(dǎo)數(shù)來研

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分8分)
          某商店經(jīng)營的消費(fèi)品進(jìn)價(jià)每件14元,月銷售量(百件)與銷售價(jià)格(元)的關(guān)系如下圖,每月各種開支2000元.

          (1)寫出月銷售量(百件)與銷售價(jià)格(元)的函數(shù)關(guān)系;
          (2)寫出月利潤(元)與銷售價(jià)格(元)的函數(shù)關(guān)系;
          (3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤最大?并求出最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
          已知函數(shù)=.
          (1)判斷函數(shù)的奇偶性,并證明;
          (2)求的反函數(shù),并求使得函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分14分) 已知是方程的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/b/1vwmh2.png" style="vertical-align:middle;" />.
          ⑴當(dāng)時(shí),求函數(shù)的值域;
          ⑵證明:函數(shù)在其定義域上是增函數(shù);
          ⑶在(1)的條件下,設(shè)函數(shù),
          若對任意的,總存在,使得成立,
          求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)上的增函數(shù),設(shè)
          用定義證明:上的增函數(shù);(6分)
          證明:如果,則>0,(6分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          ( 本題滿分14分)已知函數(shù)對任意實(shí)數(shù)均有,其中常數(shù)k為負(fù)數(shù),且在區(qū)間上有表達(dá)式
          (1)求的值;
          (2)寫出上的表達(dá)式,并討論函數(shù)上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (10分)設(shè)為奇函數(shù),為常數(shù).
          (1)求的值;
          (2)證明在區(qū)間內(nèi)單調(diào)遞增;
          (3)若對于區(qū)間[3,4]上的每一個(gè)的值,不等式>恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分14分)已知函數(shù)

          (1)作出函數(shù)的圖象;
          (2)寫出函數(shù)的單調(diào)區(qū)間;
          (3)判斷函數(shù)的奇偶性,并用定義證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分14分)
          已知函數(shù).
          (1)求證:函數(shù)上是單調(diào)遞增函數(shù);
          (2)當(dāng)時(shí),求函數(shù)在上的最值;
          (3)函數(shù)上恒有成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案