日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值為( 。
          A.n(n∈Z)B.2n(n∈Z)
          C.2n或2n-
          1
          4
          (n∈Z)
          D.n或n-
          1
          4
          (n∈Z)
          因?yàn)楹瘮?shù)f(x)是定義在R上的偶函數(shù),設(shè)x∈[-1,0],則-x∈[0,1],于是f(x)=(-x)2=x2
          設(shè)x∈[1,2],則(x-2)∈[-1,0].于是,f(x)=f(x-2)=(x-2)2
          ①當(dāng)a=0時(shí),聯(lián)立
          y=x
          y=x2
          ,解之得
          x=0
          y=0
          x=1
          y=1
          ,即當(dāng)a=0時(shí),即直線y=x+a與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn).
          ②當(dāng)-2<a<0時(shí),只有當(dāng)直線y=x+a與函數(shù)f(x)=x2在區(qū)間[0,1)上相切,且與函數(shù)f(x)=(x-2)2 在x∈[1,2)上僅有一個(gè)交點(diǎn)時(shí)才滿足條件.由f(x)=2x=1,解得x=
          1
          2
          ,
          ∴y=(
          1
          2
          )2
          =
          1
          4
          ,故其切點(diǎn)為(
          1
          2
          ,
          1
          4
          )

          a=
          1
          4
          -
          1
          2
          =-
          1
          4
          ;
          y=x-
          1
          4
          y=(x-2)2
          (1≤x<2)解之得
          x=
          5-2
          2
          2
          y=
          9-4
          2
          4

          綜上①②可知:直線y=x+a與函數(shù)y=f(x)在區(qū)間[0,2)上的圖象有兩個(gè)不同的公共點(diǎn)時(shí)的a的值為0或-
          1
          4

          又函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+2)=f(x),實(shí)數(shù)a的值為2n或2n-
          1
          4
          ,(n∈Z).
          故應(yīng)選C.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
          3
          2
          ,0)時(shí)
          ,f(x)=log2(-3x+1),則f(2011)=( 。
          A、-2
          B、2
          C、4
          D、log27

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在N*的函數(shù),且滿足f(f(k))=3k,f(1)=2,設(shè)an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
          (I)求bn的表達(dá)式;
          (II)求證:
          b1
          f(a1)
          +
          b2
          f(a2) 
          +…+
          bn
          f(an)
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實(shí)數(shù)x的取值范圍為
          (0,1]
          (0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•臨沂二模)已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈[-e,0)時(shí),f(x)=ax-ln(-x),(a<0,a∈R)
          (I)求f(x)的解析式;
          (Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,e]時(shí)f(x)的最大值是-3,如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          注:此題選A題考生做①②小題,選B題考生做①③小題.
          已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí)有f(x)=
          4xx+4

          ①求f(x)的解析式;
          ②(選A題考生做)求f(x)的值域;
          ③(選B題考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案