【題目】如圖,在四棱錐中,
,
,
.
(1)證明:平面
;
(2)若是
的中點(diǎn),
,
,求二面角
的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)利用勾股定理可得與
即可證明
平面
.
(2)根據(jù)垂直關(guān)系可以建立以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系,再利用空間向量的方法分別求得平面
的一個(gè)法向量與平面
的一個(gè)法向量,再利用二面角的夾角公式求解即可.
(1)因?yàn)?/span>,所以
,同理可得
.
因?yàn)?/span>,所以
平面
.
(2)因?yàn)?/span>,所以
、
、
兩兩垂直,以
為坐標(biāo)原點(diǎn),
建立如圖所示的空間直角坐標(biāo)系,
因?yàn)?/span>,所以
,
,
,
,
因?yàn)?/span>是
的中點(diǎn),所以
,
因?yàn)?/span>,
,所以
,
所以,
.
設(shè)平面的一個(gè)法向量為
,
由,得
,
取,得
.
取的中點(diǎn)
,連接
,易證
平面
,
則平面的一個(gè)法向量為
.設(shè)二面角
的平面角為
,
由圖知,所以
,
所以二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值為
,其中
為自然對數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù),對任意
,
恒成立.
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道,目前最常見的骰子是六面骰,它是一顆正立方體,上面分別有一到六個(gè)洞(或數(shù)字),其相對兩面之?dāng)?shù)字和必為七.顯然,擲一次六面骰,只能產(chǎn)生六個(gè)數(shù)之一(正上面).現(xiàn)欲要求你設(shè)計(jì)一個(gè)“十進(jìn)制骰”,使其擲一次能產(chǎn)生0~9這十個(gè)數(shù)之一,而且每個(gè)數(shù)字產(chǎn)生的可能性一樣.請問:你能設(shè)計(jì)出這樣的骰子嗎?若能,請寫出你的設(shè)計(jì)方案;若不能,寫出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求證:BD⊥AE
(2)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)對任意均有
求
的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中醫(yī)藥研究所研制出一種新型抗癌藥物,服用后需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)
次;(2)混合檢驗(yàn),將其中
份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這
份的血液全為陰性,因而這
份血液樣本只需檢驗(yàn)一次就夠了;若檢驗(yàn)結(jié)果為陽性,為了明確這
份血液究竟哪份為陽性,就需要對這
份再逐份檢驗(yàn),此時(shí)這
份血液的檢驗(yàn)次數(shù)總共為
次假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果總陽性還是陰性都是相互獨(dú)立的,且每份樣本是陽性的概率為
.
(1)假設(shè)有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗(yàn)的方式,求恰好經(jīng)過兩次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.
(2)現(xiàn)取其中的份血液樣本,記采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)為
;采用混合檢驗(yàn)的方式,樣本簡要檢驗(yàn)的總次數(shù)為
;
(。┤,試運(yùn)用概率與統(tǒng)計(jì)的知識(shí),求
關(guān)于
的函數(shù)關(guān)系
,
(ⅱ)若,采用混合檢驗(yàn)的方式需要檢驗(yàn)的總次數(shù)的期望比逐份檢驗(yàn)的總次數(shù)的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與圓
相交于
,
兩點(diǎn),且點(diǎn)
的橫坐標(biāo)為
.
是拋物線
的焦點(diǎn),過焦點(diǎn)的直線
與拋物線
相交于不同的兩點(diǎn)
,
.
(1)求拋物線的方程.
(2)過點(diǎn),
作拋物線
的切線
,
,
是
,
的交點(diǎn),求證:點(diǎn)
在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過F的直線與拋物線交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則下列命題中正確的個(gè)數(shù)為( )
①面積的最小值為4;
②以為直徑的圓與x軸相切;
③記,
,
的斜率分別為
,
,
,則
;
④過焦點(diǎn)F作y軸的垂線與直線,
分別交于點(diǎn)M,N,則以
為直徑的圓恒過定點(diǎn).
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
⑴當(dāng)時(shí),求函數(shù)
的極值;
⑵若存在與函數(shù),
的圖象都相切的直線,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com