日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,圓錐的展開側(cè)面圖是一個半圓,是底面圓的兩條互相垂直的直徑,為母線的中點(diǎn),已知過的平面與圓錐側(cè)面的交線是以為頂點(diǎn)、為對稱軸的拋物線的一部分.

          1)證明:圓錐的母線與底面所成的角為

          2)若圓錐的側(cè)面積為,求拋物線焦點(diǎn)到準(zhǔn)線的距離.

          【答案】1)答案見解析(2

          【解析】

          1)設(shè)底面圓的半徑為,圓錐的母線,因為圓錐的側(cè)面展開圖扇形弧長與圓錐的底面圓的周長相等,列出底面半徑關(guān)系式,即可證明:圓錐的母線與底面所成的角為.

          2)因為圓錐的側(cè)面積為,即可求得其母線長.由⑴可知,可得.在平面建立坐標(biāo)系,以原點(diǎn),軸正方向,設(shè)拋物線方程,代入即可求得,進(jìn)而拋物線焦點(diǎn)到準(zhǔn)線的距離.

          1)設(shè)底面圓的半徑為,圓錐的母線

          圓錐的側(cè)面展開圖扇形弧長與圓錐的底面圓的周長相等

          可得

          由題意可知:底面圓

          :

          圓錐的母線與底面所成的角為

          2 圓錐的側(cè)面積為

          可得,:

          可得

          , 的中點(diǎn),可得

          在平面建立坐標(biāo)系,以原點(diǎn),軸正方向.如圖:

          設(shè)拋物線方程

          代入可得

          根據(jù)拋物線性質(zhì)可知, 拋物線焦點(diǎn)到準(zhǔn)線的距離為.

          拋物線焦點(diǎn)到準(zhǔn)線的距離

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的焦距為2,左右焦點(diǎn)分別為,,以原點(diǎn)O為圓心,以橢圓C的半短軸長為半徑的圓與直線相切.

          求橢圓C的方程;

          設(shè)不過原點(diǎn)的直線l與橢圓C交于AB兩點(diǎn).

          若直線的斜率分別為,,且,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

          若直線l的斜率是直線OA,OB斜率的等比中項,求面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是(

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在直三棱柱ABCA1B1C1中,側(cè)面BCC1B1為正方形,A1B1⊥B1C1.設(shè)A1C與AC1交于點(diǎn)D,B1C與BC1交于點(diǎn)E.

          求證:(1)DE∥平面ABB1A1;

          (2)BC1⊥平面A1B1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線與直線 相交于、兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn) .

          (1)當(dāng)k=1時,求的值;

          (2)若的面積等于,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,該幾何體由半圓柱體與直三棱柱構(gòu)成,半圓柱體底面直徑,,D為半圓弧的中點(diǎn),若異面直線BD所成角的大小為

          1)證明:平面;

          2)求該幾何體的表面積和體積;

          3)求點(diǎn)D到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

          年齡x

          28

          32

          38

          42

          48

          52

          58

          62

          收縮壓單位

          114

          118

          122

          127

          129

          135

          140

          147

          其中:,,

          請畫出上表數(shù)據(jù)的散點(diǎn)圖;

          請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;的值精確到

          若規(guī)定,一個人的收縮壓為標(biāo)準(zhǔn)值的倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的倍及以上,則為高度高血壓人群一位收縮壓為180mmHg70歲的老人,屬于哪類人群?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某游戲公司對今年新開發(fā)的一些游戲進(jìn)行評測,為了了解玩家對游戲的體驗感,研究人員隨機(jī)調(diào)查了300名玩家,對他們的游戲體驗感進(jìn)行測評,并將所得數(shù)據(jù)統(tǒng)計如圖所示,其中.

          1)求這300名玩家測評分?jǐn)?shù)的平均數(shù);

          2)由于該公司近年來生產(chǎn)的游戲體驗感較差,公司計劃聘請3位游戲?qū)<覍τ螒蜻M(jìn)行初測,如果3人中有2人或3人認(rèn)為游戲需要改進(jìn),則公司將回收該款游戲進(jìn)行改進(jìn);若3人中僅1人認(rèn)為游戲需要改進(jìn),則公司將另外聘請2位專家二測,二測時,2人中至少有1人認(rèn)為游戲需要改進(jìn)的話,公司則將對該款游戲進(jìn)行回收改進(jìn).已知該公司每款游戲被每位專家認(rèn)為需要改進(jìn)的概率為,且每款游戲之間改進(jìn)與否相互獨(dú)立.

          i)對該公司的任意一款游戲進(jìn)行檢測,求該款游戲需要改進(jìn)的概率;

          ii)每款游戲聘請專家測試的費(fèi)用均為300/人,今年所有游戲的研發(fā)總費(fèi)用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進(jìn)行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費(fèi)用是否超過預(yù)算,并通過計算說明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

          則下列結(jié)論正確的是  

          A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

          B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

          C. 2015年與2018年藝體達(dá)線人數(shù)相同

          D. 與2015年相比,2018年不上線的人數(shù)有所增加

          查看答案和解析>>

          同步練習(xí)冊答案