若函數(shù)y=f(x)在R上可導(dǎo),且滿足不等式xf′(x)>-f(x)恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是 ( )
A.a(chǎn)f(b)>bf(a) | B.a(chǎn)f(a)>bf(b) |
C.a(chǎn)f(a)<bf(b) | D.a(chǎn)f(b)<bf(a) |
令F(x)=xf(x),
則F′(x)=xf′(x)+f(x),由xf′(x)>-f(x),
得xf′(x)+f(x)>0,
即F′(x)>0,
所以F(x)在R上為遞增函數(shù).
因為a>b,所以af(a)>bf(b).
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

.
(1)求函數(shù)的極小值;
(2)求函數(shù)的遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

.
(1)當(dāng)

時,求函數(shù)

單調(diào)區(qū)間;
(2)若函數(shù)

在區(qū)間[1,2]上的最小值為

,求

的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

,其中

.
(1)若

,求函數(shù)

的極值;
(2)當(dāng)

時,試確定函數(shù)

的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)

.若曲線

在點

處的切線與直線

垂直,
(1)求實數(shù)

的值;
(2)求函數(shù)

的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=ln x-

.
(1)當(dāng)a>0時,判斷f(x)在定義域上的單調(diào)性;
(2)f(x)在[1,e]上的最小值為

,求實數(shù)a的值;
(3)試求實數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x
2的圖象恒在函數(shù)y=f(x)圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)

滿足

且當(dāng)

時,

,則( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)

.
(1)若函數(shù)

在

上為減函數(shù),求實數(shù)

的最小值;
(2)若存在

,使

成立,求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)y=

x
2
㏑x的單調(diào)遞減區(qū)間為( )
A.( 1,1] | B.(0,1] | C.[1,+∞) | D.(0,+∞) |
查看答案和解析>>