日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過程中,有下列三個(gè)命題:

          ①總有平面

          ②線段BM的長(zhǎng)為定值;

          ③存在某個(gè)位置,使DE與所成的角為90°.

          其中正確的命題是_______.(寫出所有正確命題的序號(hào))

          【答案】①②

          【解析】

          D的中點(diǎn)N,連接MN,EN,根據(jù)四邊形MNEB為平行四邊形判斷①,②,假設(shè)DE⊥C得出矛盾結(jié)論判斷③.

          D的中點(diǎn)N,連接MN,EN,

          則MN為△CD的中位線,

          ∴MN∥CD,且MN=CD

          又E為矩形ABCD的邊AB的中點(diǎn),∴BE∥CD,且BE=CD

          ∴MN∥BE,且MN=BE即四邊形MNEB為平行四邊形,∴BM∥EN,

          又EN平面A1DE,BM平面A1DE,

          ∴BM∥平面DE,故①正確;

          由四邊形MNEB為平行四邊形可得BM=NE,

          而在翻折過程中,NE的長(zhǎng)度保持不變,故BM的長(zhǎng)為定值,故②正確;

          取DE的中點(diǎn)O,連接O,CO,

          D=E可知O⊥DE,

          若DE⊥C,則DE⊥平面OC,

          ∴DE⊥OC,又∠CDO=90°﹣∠ADE=45°,

          ∴△OCD為等腰直角三角形,故而CDOD,

          而ODDE,CD=4,與CDOD矛盾,故DE與C所成的角不可能為90°.

          故③錯(cuò)誤.

          故答案為:①②.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1.

          (1)求曲線的方程;

          (2)若直線 與曲線交于,兩點(diǎn),求證:直線與直線的傾斜角互補(bǔ).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計(jì)了10次訂餐“送達(dá)時(shí)間”,得到莖葉圖如下:(時(shí)間:分鐘)

          (1)請(qǐng)計(jì)算“送達(dá)時(shí)間”的平均數(shù)與方差:

          (2)根據(jù)莖葉圖填寫下表:

          送達(dá)時(shí)間

          35分組以內(nèi)(包括35分鐘)

          超過35分鐘

          頻數(shù)

          A

          B

          頻率

          C

          D

          在答題卡上寫出,,的值;

          (3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個(gè)客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著社會(huì)的進(jìn)步與發(fā)展,中國的網(wǎng)民數(shù)量急劇增加.下表是中國從年網(wǎng)民人數(shù)及互聯(lián)網(wǎng)普及率、手機(jī)網(wǎng)民人數(shù)(單位:億)及手機(jī)網(wǎng)民普及率的相關(guān)數(shù)據(jù).

          年份

          網(wǎng)民人數(shù)

          互聯(lián)網(wǎng)普及率

          手機(jī)網(wǎng)民人數(shù)

          手機(jī)網(wǎng)民普及率

          2009

          2010

          2011

          2012

          2013

          2014

          2015

          2016

          2017

          2018

          (互聯(lián)網(wǎng)普及率(網(wǎng)民人數(shù)/人口總數(shù))×100%;手機(jī)網(wǎng)民普及率(手機(jī)網(wǎng)民人數(shù)/人口總數(shù))×100%

          (Ⅰ)從這十年中隨機(jī)選取一年,求該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過80%的概率;

          (Ⅱ)分別從網(wǎng)民人數(shù)超過6億的年份中任選兩年,記為手機(jī)網(wǎng)民普及率超過50%的年數(shù),求的分布列及數(shù)學(xué)期望;

          (Ⅲ)若記年中國網(wǎng)民人數(shù)的方差為,手機(jī)網(wǎng)民人數(shù)的方差為,試判斷的大小關(guān)系.(只需寫出結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓方程為,過點(diǎn)的直線l交橢圓于點(diǎn)A,B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:

          1)動(dòng)點(diǎn)P的軌跡方程;

          2的最小值與最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】20175月,來自一帶一路沿線的20國青年評(píng)選出了中國的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購.乘坐高鐵可以網(wǎng)絡(luò)購票,為了研究網(wǎng)絡(luò)購票人群的年齡分布情況,在531日重慶到成都高鐵9600名網(wǎng)絡(luò)購票的乘客中隨機(jī)抽取了120人進(jìn)行了統(tǒng)計(jì)并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如下直方圖:

          1)試通過直方圖,估計(jì)531日當(dāng)天網(wǎng)絡(luò)購票的9600名乘客年齡的中位數(shù);

          2)若在調(diào)查的且年齡在段乘客中隨機(jī)抽取兩人,求兩人均來自同一年齡段的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當(dāng)?shù)靥禺a(chǎn)蘋果.蘋果單果直徑不同單價(jià)不同,為了更好的銷售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋果樹上隨機(jī)摘下了50個(gè)蘋果測(cè)量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:),統(tǒng)計(jì)的莖葉圖如圖所示:

          (Ⅰ)按分層抽樣的方法從單果直徑落在[80,85),[85,90)的蘋果中隨機(jī)抽取6個(gè),再從這6個(gè)蘋果中隨機(jī)抽取2個(gè),求這兩個(gè)蘋果單果直徑均在[85,90)內(nèi)的概率;

          (Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.已知該精準(zhǔn)扶貧戶有20000個(gè)約5000千克蘋果待出售,某電商提出兩種收購方案:

          方案:所有蘋果均以5.5元/千克收購;

          方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個(gè)蘋果,定價(jià)收購方式為:?jiǎn)喂睆?在[50,65)內(nèi)按35元/箱收購,在[65,90)內(nèi)按50元/箱收購,在[90,95]內(nèi)按35元/箱收購.包裝箱與分揀裝箱工費(fèi)為5元/箱.請(qǐng)你通過計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,,,,O的中點(diǎn).

          1)證明:平面;

          2)若,,,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過Mx軸的垂線,垂足為N,點(diǎn)P滿足.

          1)求點(diǎn)P的軌跡方程;

          2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線C的左焦點(diǎn)F.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案