科目:高中數學 來源: 題型:解答題
已知雙曲線的中心在原點,焦點在坐標軸上,離心率為
,且過點(4,-
)(1)求雙曲線的方程.(2)若點M(3,m)在雙曲線上,求證:
.(3)若點A,B在雙曲線上,點N(3,1)恰好是AB的中點,求直線AB的方程(12分)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)拋物線的焦點為
,過點
的直線交拋物線于
,
兩點.
①為坐標原點,求證:
;
②設點在線段
上運動,原點
關于點
的對稱點為
,求四邊形
面積的最小值..
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知頂點在坐標原點,焦點在軸正半軸的拋物線上有一點
,
點到拋物線焦點的距離為1.(1)求該拋物線的方程;(2)設
為拋物線上的一個定點,過
作拋物線的兩條互相垂直的弦
,
,求證:
恒過定點
.(3)直線
與拋物線交于
,
兩點,在拋物線上是否存在點
,使得△
為以
為斜邊的直角三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分) 如圖,已知拋物線與坐標軸分別交于A、B
、C
三點,過坐標原點O的直線
與拋物線交于M、N兩點.分別過點C、D
作平行于
軸的直線
、
.(1)求拋物線對應的二次函數的解析式;(2)求證:以ON為直徑的圓與直線
相切;(3)求線段MN的長(用
表示),并證明M、N兩點到直線
的距離之和等于線段MN的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系上取兩個定點
,再取兩個動點
,且
.
(Ⅰ)求直線與
交點的軌跡
的方程;
(Ⅱ)已知點(
)是軌跡
上的定點,
是軌跡
上的兩個動點,如果直線
的斜率
與直線
的斜率
滿足
,試探究直線
的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題分12分)
如圖,斜率為1的直線過拋物線的焦點,與拋物線交于兩點A、B, 將直線
按向量
平移得到直線
,
為
上的動點,
為拋物線弧
上的動點.
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分) 設拋物線C1:x2=4y的焦點為F,曲線C2與C1關于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PA,PB,切點A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com