已知函數(shù),
的圖象經(jīng)過
和
兩點(diǎn),如圖所示,且函數(shù)
的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/a/h4jou.png" style="vertical-align:middle;" />.過該函數(shù)圖象上的動(dòng)點(diǎn)
作
軸的垂線,垂足為
,連接
.
(I)求函數(shù)的解析式;
(Ⅱ)記的面積為
,求
的最大值.
(I);(II)三角形面積的最大值為16.
解析試題分析:(I)用待定系數(shù)法.由拋物線的對(duì)稱性及題設(shè)可知,函數(shù)的對(duì)稱軸為
,頂點(diǎn)為
.
將頂點(diǎn)坐標(biāo)及點(diǎn)(0,0),(0,6)的坐標(biāo)代入解析式得關(guān)于a,b,c方程組,解此方程組,便可得 的解析式.
(II)用三角形面積公式求得三角形的面積與t之間的函數(shù)關(guān)系式,然后利用導(dǎo)數(shù)可求得的面積為
,求
的最大值.
試題解析:(I)由已知可得函數(shù)的對(duì)稱軸為
,頂點(diǎn)為
. 2分
方法一:由
得 5分
得 6分
方法二:設(shè) 4分
由,得
5分
6分
(II) 8分
9分
列表得:
11分4 + 0 - 極大值
由上表可得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),
≤
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在點(diǎn)
處的切線方程為
,求
的值;
(2)若,函數(shù)
在區(qū)間
內(nèi)有唯一零點(diǎn),求
的取值范圍;
(3)若對(duì)任意的,均有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)和
,且
.
(1)求函數(shù),
的表達(dá)式;
(2)當(dāng)時(shí),不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的極值點(diǎn);
(2)若直線過點(diǎn)
,并且與曲線
相切,求直線
的方程;
(3)設(shè)函數(shù),其中
,求函數(shù)
在
上的最小值(其中
為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)滿足
且
的圖像在
處的切線垂直于直線
.
(1)求的值;
(2)若方程有實(shí)數(shù)解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
⑴求證函數(shù)在
上的單調(diào)遞增;
⑵函數(shù)有三個(gè)零點(diǎn),求
的值;
⑶對(duì)恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)當(dāng),
時(shí),求
的單調(diào)區(qū)間;
(2)當(dāng),且
時(shí),求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)曲線
在與
軸交點(diǎn)處的切線為
,
為
的導(dǎo)函數(shù),滿足
.
(1)求;
(2)設(shè),
,求函數(shù)
在
上的最大值;
(3)設(shè),若對(duì)于一切
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com