日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知、分別是橢圓C:的左焦點(diǎn)和右焦點(diǎn),O是坐標(biāo)系原點(diǎn), 且橢圓C的焦距為6, 過(guò)的弦兩端點(diǎn)所成⊿的周長(zhǎng)是.
          (Ⅰ).求橢圓C的標(biāo)準(zhǔn)方程.
          (Ⅱ)已知點(diǎn)是橢圓C上不同的兩點(diǎn),線段的中點(diǎn)為.
          求直線的方程;
          (Ⅲ)若線段的垂直平分線與橢圓C交于點(diǎn)、,試問(wèn)四點(diǎn)、、是否在同一個(gè)圓上,若是,求出該圓的方程;若不是,請(qǐng)說(shuō)明理由.
          (Ⅰ) 解:設(shè)橢圓C:的焦距為2c,
          ∵橢圓C:的焦距為2,  ∴2c=6,即c=3…………1分
          又∵、分別是橢圓C:的左焦點(diǎn)和右焦點(diǎn),且過(guò)的弦AB兩端點(diǎn)A、B與所成⊿AB的周長(zhǎng)是.
          ∴⊿AB的周長(zhǎng) = AB+(AF2+BF2)= (AF1+BF1)+ (AF2+BF2)=4=
                                                     …………2分
          又∵, ∴∴橢圓C的方程是…………4分
          (Ⅱ)解一:點(diǎn),是橢圓C上不同的兩點(diǎn),
          ,.以上兩式相減得:,                             
          ,
          ∵線段的中點(diǎn)為,∴.                                                           
          ,
          當(dāng),由上式知, 則重合,與已知矛盾,因此
          . ∴直線的方程為,即.                    
           消去,得,解得.
          ∴所求直線的方程為.    ………………8分
          解二: 當(dāng)直線的不存在時(shí), 的中點(diǎn)在軸上, 不符合題意.
          故可設(shè)直線的方程為, .           
           消去,得   (*)
          .              的中點(diǎn)為,
          ..解得.                                                           
          此時(shí)方程(*)為,其判別式.∴直線的方程為.                                     
          (Ⅲ)由于直線的方程為,
          則線段的垂直平分線的方程為,即.        
           得,                               
          消去,設(shè)
          .
          ∴線段的中點(diǎn)G的橫坐標(biāo)為,縱坐標(biāo).
          .                                             
          .

          ,                    
          ∴四點(diǎn)、、在同一個(gè)圓上,此圓的圓心為點(diǎn)G,半徑為
          其方程為.         …………14分   
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          P是橢圓上的點(diǎn),是橢圓的焦點(diǎn),若
          . 則此橢圓的離心率為(   )                                                                     
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          如圖,在等邊中,O為邊的中點(diǎn),,DE的高線上的點(diǎn),且,.若以A,B為焦點(diǎn),O為中心的橢圓過(guò)點(diǎn)D,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,記橢圓為M

          (1)求橢圓M的方程;
          (2)過(guò)點(diǎn)E的直線與橢圓M交于不同的兩點(diǎn)P,Q,點(diǎn)P在點(diǎn)E, Q
          間,且,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          ..(本小題滿分12分)
          已知直線與橢圓相交于A,B兩點(diǎn),線段AB中點(diǎn)M在直線上.
          (1)求橢圓的離心率;
          (2)若橢圓右焦點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在單位圓上,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          橢圓的一個(gè)焦點(diǎn),(c為橢圓的半焦距).
          (1)求橢圓的方程;
          (2)若為直線上一點(diǎn),為橢圓的左頂點(diǎn),連結(jié)交橢圓于點(diǎn),求的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓經(jīng)過(guò)點(diǎn)(),且它的左焦點(diǎn)F1將長(zhǎng)軸分成2∶1,F(xiàn)2是橢圓的右焦點(diǎn).

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)P是橢圓上不同于左右頂點(diǎn)的動(dòng)點(diǎn),延長(zhǎng)F1P至Q,使Q、F2關(guān)于∠F1PF2的外角平分線l對(duì)稱,求F2Q與l的交點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          的離心率為
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分14分)設(shè)橢圓(a>b>0)的左焦點(diǎn)為F1(-2,0),左準(zhǔn)線 L1 與x軸交于點(diǎn)N(-3,0),過(guò)點(diǎn)N且傾斜角為300的直線L交橢圓于A、B兩點(diǎn)。
          (1)求直線L和橢圓的方程;
          (2)求證:點(diǎn)F1(-2,0)在以線段AB為直徑的圓上

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          ((本小題滿分12分)
          已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,短軸長(zhǎng)為2.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)直線過(guò)且與橢圓相交于A,B兩點(diǎn),當(dāng)P是AB的中點(diǎn)時(shí),
          求直線的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案