日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC=
          (1)求角A;
          (2)若a=2 ,b+c=4,求△ABC的面積.

          【答案】
          (1)解:在△ABC中,∵cosBcosC﹣sinBsinC= ,

          ∴cos(B+C)= ,

          又∵0<B+C<π,

          ∴B+C=

          ∵A+B+C=π,

          ∴A=


          (2)解:由余弦定理a2=b2+c2﹣2bccosA,

          得(2 2=(b+c)2﹣2bc﹣2bccos

          把b+c=4代入得:12=16﹣2bc+bc,

          整理得:bc=4,

          則△ABC的面積S= bcsinA= ×4× =


          【解析】(1)已知等式左邊利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),求出cos(B+C)的值,確定出B+C的度數(shù),即可求出A的度數(shù);(2)利用余弦定理列出關(guān)系式,再利用完全平方公式變形,將a與b+c的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC面積.
          【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知x>0,y>0,且2x+8y﹣xy=0,求:
          (1)xy的最小值;
          (2)x+y的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(﹣x)+f(x)=0恒成立,如果實(shí)數(shù)a,b滿足不等式組 ,那么a2+b2的取值范圍是(
          A.[9,49]
          B.(17,49]
          C.[9,41]
          D.(17,41]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 =(sinA,cosA), =(cosB,sinB), =sin2C且A、B、C分別為△ABC的三邊a,b,c所對(duì)的角.
          (1)求角C的大;
          (2)若sinA,sinC,sinB成等比數(shù)列,且 =18,求c的值..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)列{an}中,已知對(duì)任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
          A.(3n﹣1)2
          B.
          C.9n﹣1
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) .

          (1)若 ,求曲線 在點(diǎn) 處的切線方程;

          (2)若 處取得極小值,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知p:函數(shù)f(x)=lg(ax2﹣x+ a)的定義域?yàn)镽;q:a≥1.如果命題“p∨q為真,p∧q為假”,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某早餐店每天制作甲、乙兩種口味的糕點(diǎn)共n(nN*)份,每份糕點(diǎn)的成本1元,售價(jià)2元,如果當(dāng)天賣不完,剩下的糕點(diǎn)作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點(diǎn)每天都有剩余,為此整理了過(guò)往100天這兩種糕點(diǎn)的日銷量(單位:份),得到如下的統(tǒng)計(jì)數(shù)據(jù):

          甲口味糕點(diǎn)日銷量

          48

          49

          50

          51

          天數(shù)

          20

          40

          20

          20

          乙口味糕點(diǎn)日銷量

          48

          49

          50

          51

          天數(shù)

          40

          30

          20

          10

          以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種糕點(diǎn)的日銷量相互獨(dú)立.

          (1)記該店這兩種糕點(diǎn)每日的總銷量為X份,求X的分布列

          (2)早餐店為了減少浪費(fèi),提升利潤(rùn),決定調(diào)整每天制作糕點(diǎn)的份數(shù)

          ①若產(chǎn)生浪費(fèi)的概率不超過(guò)0.6,求n的最大值;

          ②以銷售這兩種糕點(diǎn)的日總利潤(rùn)的期望值為決策依據(jù),在每天所制糕點(diǎn)能全部賣完與n=98之中選其一,應(yīng)選哪個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知橢圓的左頂點(diǎn),且點(diǎn)在橢圓上, 、分別是橢圓的左、右焦點(diǎn)。過(guò)點(diǎn)作斜率為的直線交橢圓于另一點(diǎn),直線交橢圓于點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)若為等腰三角形,求點(diǎn)的坐標(biāo);

          3)若,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案