日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (選修4-5:不等式選講)
          已知正數(shù)x,y,z滿足x2+y2+z2=1.
          (Ⅰ)求x+2y+2z的最大值;
          (Ⅱ)若不等式|a-3|≥x+2y+2z對一切正數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.
          分析:(Ⅰ)分析題目已知x2+y2+z2=1,求x+2y+3z的最大值.考慮到應用柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2),首先構(gòu)造出柯西不等式求出(x+2y+2z)2的最大值,開平方根即可得到答案;
          (Ⅱ)由(Ⅰ)得,不等式|a-3|≥x+2y+2z對一切正數(shù)x,y,z恒成立,當且僅當|a-3|≥3成立,
          解答:解:(Ⅰ)因為已知x2+y2+z2=1根據(jù)柯西不等式:
          (ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:
          (x+2y+2z)2≤(x2+y2+z2)(12+22+22)≤1×9=9
          故x+2y+2z≤
          9
          =3
          .當且僅當x=
          y
          2
          =
          z
          2
          時取等號.
          則當x=
          1
          3
          ,y=z=
          2
          3
          時x+2y+2z的最大值是3;
          (Ⅱ)由(Ⅰ)得,不等式|a-3|≥x+2y+2z對一切正數(shù)x,y,z恒成立,
          當且僅當|a-3|≥3成立,
          a<3
          3-a≥3
          a≥3
          a-3≥3
          ,解得a≤0,或a≥6,
          所以實數(shù)a的取值范圍是(-∞,0]∪[6,+∞).
          點評:本小題主要考查基本不等式的應用、配湊法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (選修4-5:不等式選講)
          已知a,b,c∈R+,且
          1
          a
          +
          2
          b
          +
          3
          c
          ≤|x|+|x-2|對?x∈R恒成立,求a+2b+3c的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          選修4-5:不等式選講:
          已知a、b、c是正實數(shù),求證:
          a2
          b2
          +
          b2
          c2
          +
          c2
          a2
          b
          a
          +
          c
          b
          +
          a
          c

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿分10分)
          若點A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿分10分)
          在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•泰州三模)選修4-5:不等式選講
          已知a>0,b>0,n∈N*.求證:
          an+1+bn+1
          an+bn
          ab

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•徐州模擬)[選修4-5:不等式選講]
          已知a,b,c為正數(shù),且滿足acos2θ+bsin2θ<c,求證:
          a
          cos2θ+
          b
          sin2θ<
          c

          查看答案和解析>>

          同步練習冊答案