日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在各棱長均為2的正三棱柱中, 分別為棱的中點, 為線段上的動點,其中, 更靠近,且.

          (1)證明: 平面;

          (2)若與平面所成角的正弦值為,求異面直線所成角的余弦值.

          【答案】(1)證明見解析.

          (2).

          【解析】試題分析:(1)根據(jù)正三角形性質(zhì)得,結(jié)合線面垂直得.因此可得平面,即.再根據(jù),得平面,(2)先根據(jù)條件建立空間直角坐標系,設(shè)立各點坐標,利用方程組解平面法向量,根據(jù)向量數(shù)量積求夾角,再根據(jù)線面角與向量夾角互余關(guān)系列方程,解得N坐標,最后根據(jù)向量數(shù)量積求異面直線所成角的余弦值.

          試題解析:解:(1)證明:由已知得為正三角形,為棱的中點,

          ,

          在正三棱柱中,底面,則.

          ,∴平面,∴.

          易證,又,∴平面.

          (2)解:取的中點,的中點,則,,

          為坐標原點,建立如圖所示的空間直角坐標系

          ,,,

          設(shè)

          ,

          易知是平面的一個法向量,

          ,解得.

          , ,,

          ,

          ∴異面直線所成角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形中,,的中點,中點.將沿折起到,使得平面平面(如圖2).

          (1)求證:;

          (2)求直線與平面所成角的正弦值;

          (3)在線段上是否存在點,使得平面? 若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)).

          (Ⅰ)將曲線,的參數(shù)方程化為普通方程;

          (Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)對任意的m,nR都有f(mn)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.

          (1)求證:f(x)R上是增函數(shù);

          (2)f(3)=4,解不等式f(a2a-5)<2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,中點,且平面,為線段上一動點,記

          (1)當時,求異面直線所成角的余弦值;

          (2)當與平面所成角的正弦值為時,求的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積是 ,表面積是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),(e是自然對數(shù)的底數(shù)),對任意的R,存在,有,則的取值范圍為____________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題 表示雙曲線,命題 表示橢圓。

          (1)若命題與命題 都為真命題, 的什么條件?

          (請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)

          (2)若 為假命題, 為真命題求實數(shù) 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列有關(guān)命題的說法正確的是(

          A. 命題x2=1,x=1”的否命題為:x2=1,x≠1”

          B. “m=1”直線x-my=0和直線x+my=0互相垂直的充要條件

          C. 命題,使得的否定是﹕,均有

          D. 命題已知、B為一個三角形的兩內(nèi)角,A=B,sinA=sinB”的否命題為真命題

          查看答案和解析>>

          同步練習(xí)冊答案