日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知定義在上的函數(shù)同時滿足:①對任意,都有;②當(dāng)時,,

          (1)當(dāng)時,求的表達(dá)式;

          (2)若關(guān)于的方程上有實數(shù)解,求實數(shù)的取值范圍;

          (3)若對任意,關(guān)于的不等式都成立,求實數(shù)的取值范圍.

          【答案】(1);(2;(3

          【解析】

          (1)由①求函數(shù)周期T=2,然后由函數(shù)周期性和遞推關(guān)系式求出的函數(shù)解析式;

          (2)設(shè)方程的實數(shù)解為,利用(1)的結(jié)論解方程和不等式即可求出參數(shù)的取值范圍;

          (3)先求函數(shù)的最小值,再由函數(shù)的周期性可得在上恒有,然后求得在的最大值為最后由即可得出答案.

          (1)∵對任意,都有,∴

          則可得函數(shù)的周期為T=2,

          當(dāng)時,,∴當(dāng)時,,,

          當(dāng)時,,

          時, ;

          (2)設(shè)關(guān)于的方程上的實數(shù)解為

          ,∴

          (3)由(1)得可得在,又因函數(shù)的周期為T=2,則可得上恒有,

          令函數(shù)得在上單調(diào)遞增,則可得,

          由題意對任意,關(guān)于的不等式都成立,

          則可得恒有:解得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時,求的極值;

          (2)是否存在實數(shù),使得的單調(diào)區(qū)間相同,若存在,求出的值,若不存在,請說明理由;

          (3)若,求證:上恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角梯形PBCD中, ,APD的中點,如下左圖。將沿AB折到的位置,使,點ESD上,且,如下圖。

          1)求證: 平面ABCD

          2)求二面角E—AC—D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某科研團隊對某一生物生長規(guī)律進行研究,發(fā)現(xiàn)其生長蔓延的速度越來越快.開始在某水域投放一定面積的該生物,經(jīng)過2個月其覆蓋面積為18平方米,經(jīng)過3個月其覆蓋面積達(dá)到27平方米.該生物覆蓋面積(單位:平方米)與經(jīng)過時間個月的關(guān)系有兩個函數(shù)模型可供選擇.

          1)試判斷哪個函數(shù)模型更合適,并求出該模型的函數(shù)解析式;

          2)問約經(jīng)過幾個月,該水域中此生物的面積是當(dāng)初投放的1000(參考數(shù)據(jù):)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為2的正方形中,分別為,的中點,的中點,沿,將正方形折起,使,,重合于點,在構(gòu)成的四面體中,下列結(jié)論中錯誤的是( )

          A. 平面

          B. 直線與平面所成角的正切值為

          C. 異面直線和求所成角為

          D. 四面體的外接球表面積為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓與直線相切于點,圓心軸上.

          (1)求圓的方程;

          (2)過點且不與軸重合的直線與圓相交于兩點,為坐標(biāo)原點,直線分別與直線相交于兩點,記的面積分別是,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動文明城市和文化強市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機調(diào)查了200名學(xué)生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

          (1)求這200名學(xué)生每周閱讀時間的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);

          (2)由直方圖可以認(rèn)為,目前該校學(xué)生每周的閱讀時間服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差

          (i)一般正態(tài)分布的概率都可以轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布的概率進行計算:若,令,則,且.利用直方圖得到的正態(tài)分布,求

          (ii)從該高校的學(xué)生中隨機抽取20名,記表示這20名學(xué)生中每周閱讀時間超過10小時的人數(shù),求(結(jié)果精確到0.0001)以及的數(shù)學(xué)期望.

          參考數(shù)據(jù):,.若,則.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是定義在上的奇函數(shù),當(dāng)時,,則不等式的解集為(

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分?jǐn)?shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[6070),[70,80),[8090),[90,100]

          1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分?jǐn)?shù)據(jù)的中位數(shù);

          2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[5060)的概率.

          查看答案和解析>>

          同步練習(xí)冊答案