【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、
兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)
類產(chǎn)品
件和
類產(chǎn)品
件,乙種設(shè)備每天能生產(chǎn)
類產(chǎn)品
件和
類產(chǎn)品
件.已知設(shè)備甲每天的租賃費(fèi)為
元,設(shè)備乙每天的租賃費(fèi)為
元,現(xiàn)該公司至少要生產(chǎn)
類產(chǎn)品
件,
類產(chǎn)品
件,求所需租賃費(fèi)最少為多少元?
【答案】元
【解析】
設(shè)甲種設(shè)備需要生產(chǎn)天,乙種設(shè)備需要生產(chǎn)
天,該公司所需租賃費(fèi)為
元,可得出目標(biāo)函數(shù)為
,列出滿足題意的約束條件,然后利用線性規(guī)劃,求出最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.
設(shè)甲種設(shè)備需要生產(chǎn)天,乙種設(shè)備需要生產(chǎn)
天,該公司所需租賃費(fèi)為
元,則
,
甲、乙兩種設(shè)備生產(chǎn)、
兩類產(chǎn)品的情況如下表所示:
則滿足的約束條件為,即:
,
作出不等式表示的平面區(qū)域,
當(dāng)對(duì)應(yīng)的直線過(guò)兩直線
的交點(diǎn)
時(shí),
直線在
軸上的截距最小,
此時(shí),目標(biāo)函數(shù)取得最小值為
元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形與梯形
所在的平面互相垂直,
,
,點(diǎn)
在線段
上.
(Ⅰ) 若點(diǎn)為
的中點(diǎn),求證:
平面
;
(Ⅱ) 求證:平面平面
;
(Ⅲ) 當(dāng)平面與平面
所成二面角的余弦值為
時(shí),求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知棱長(zhǎng)為3的正方體ABCD﹣A1B1C1D1中,M是BC的中點(diǎn),點(diǎn)P是側(cè)面DCC1D1內(nèi)(包括邊界)的一個(gè)動(dòng)點(diǎn),且滿足∠APD=∠MPC.則當(dāng)三棱錐P﹣BCD的體積最大時(shí),三棱錐P﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓C1:x2+y2﹣10x+4y+25=0與圓C2:x2+y2﹣14x+2y+25=0,點(diǎn)A,B分別是C1,C2上的動(dòng)點(diǎn),M為直線y=x上的動(dòng)點(diǎn),則|MA|+|MB|的最小值為( 。
A.3B.3
C.5
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校夏令營(yíng)有3名男同學(xué)和3名女同學(xué)
,其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)
用表中字母列舉出所有可能的結(jié)果
設(shè)為事件“選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線
與
的交點(diǎn)為
,四邊形
為梯形,
,
.
(1)若,求證:
平面
;
(2)求證:平面平面
;
(3)若,求
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上饒市在某次高三適應(yīng)性考試中對(duì)數(shù)學(xué)成績(jī)數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績(jī)分析,結(jié)果這50名學(xué)生的成績(jī)?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組
,第二組
,…,第六組
,得到如圖所示的頻率分布直方圖:
(1)試由樣本頻率分布直方圖估計(jì)該校數(shù)學(xué)成績(jī)的平均分?jǐn)?shù);
(2)若從這50名學(xué)生中成績(jī)?cè)?/span>125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求
的概率.
附:若,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義區(qū)間,
,
,
的長(zhǎng)度均為
,其中
.
(1)已知函數(shù)的定義域?yàn)?/span>
,值域?yàn)?/span>
,寫(xiě)出區(qū)間
長(zhǎng)度的最大值與最小值.
(2)已知函數(shù)的定義域?yàn)閷?shí)數(shù)集
,滿足
(
是
的非空真子集).集合
,
,求
的值域所在區(qū)間長(zhǎng)度的總和.
(3)定義函數(shù),判斷函數(shù)
在區(qū)間
上是否有零點(diǎn),并求不等式
解集區(qū)間的長(zhǎng)度總和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求證函數(shù)
在
上是增函數(shù).
(2)若函數(shù)在
上有兩個(gè)不同的零點(diǎn),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com