【題目】已知棱長(zhǎng)為3的正方體ABCD﹣A1B1C1D1中,M是BC的中點(diǎn),點(diǎn)P是側(cè)面DCC1D1內(nèi)(包括邊界)的一個(gè)動(dòng)點(diǎn),且滿足∠APD=∠MPC.則當(dāng)三棱錐P﹣BCD的體積最大時(shí),三棱錐P﹣BCD的外接球的表面積為_____.
【答案】21π
【解析】
由題意得三角形相似,再借助函數(shù)求最大值,求出的位置在棱
上,且
時(shí)三棱錐的體積最大,然后由三棱錐為一條側(cè)棱垂直于底面的三棱錐,它的外接球的球心是過(guò)底面外接圓的圓心做垂直于底面的直線與中截面的交點(diǎn),而底面為直角三角形,所以底面外接圓的圓心為斜邊的中點(diǎn),且半徑為斜邊的一半,根據(jù)底面外接圓的半徑與球的半徑和三棱錐的高的一半構(gòu)成直角三角形,由題意求出外接球的半徑,求出外接球的表面積.
由題意得是
的中點(diǎn),點(diǎn)
是側(cè)面
內(nèi)(包括邊界)的一個(gè)動(dòng)點(diǎn),
且滿足
,
,及
.
設(shè),
,
,
,
化簡(jiǎn)得,當(dāng)
時(shí),
,
所以點(diǎn)在
上,且
時(shí)三棱錐
的體積最大,
這時(shí)底面外接圓圓心為斜邊的中點(diǎn)
,球心為過(guò)
垂直于底面的直線與中截面的交點(diǎn)
,
則,底面半徑
,設(shè)球的半徑
,則,
,
所以三棱錐的外接球的表面積為
,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓
:
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓
上的任意一點(diǎn),射線
與橢圓
交于點(diǎn)
,過(guò)點(diǎn)
的直線
與橢圓
有且只有一個(gè)公共點(diǎn),直線
與橢圓
交于
,
兩個(gè)相異點(diǎn),證明:
面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某綠色有機(jī)水果店中一款有機(jī)草莓味道鮮甜,店家每天以每斤元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)適量草莓,然后以每斤
元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的草莓由果汁廠以每斤
元的價(jià)格回收.
(1)若水果店一天購(gòu)進(jìn)斤草莓,求當(dāng)天的利潤(rùn)
(單位:元)關(guān)于當(dāng)天需求量
(單位:斤,
)的函數(shù)解析式;
(2)水果店記錄了天草莓的日需求量(單位:斤),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 14 | 22 | 14 | 16 | 15 | 13 | 6 |
①假設(shè)水果店在這天內(nèi)每天購(gòu)進(jìn)
斤草莓,求這
天的日利潤(rùn)(單位:元)的平均數(shù);
②若水果店一天購(gòu)進(jìn)斤草莓,以
天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于
元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為R上的偶函數(shù),當(dāng)
時(shí)
當(dāng)
時(shí),
且
對(duì)
恒成立,函數(shù)
的一個(gè)周期內(nèi)的圖像與函數(shù)
的圖像恰好有兩個(gè)公共點(diǎn),則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩圓(
圓心,半徑
),與
(圓心
,半徑
)不是同心圓,方程相減(消去二次項(xiàng))得到的直線
叫做圓
與圓
的根軸;
(1)求證:當(dāng)與
相交于A,B兩點(diǎn)時(shí),
所在直線為根軸
;
(2)對(duì)根軸上任意點(diǎn)P,求證:;
(3)設(shè)根軸與
交于點(diǎn)H,
,求證:H分
的比
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、
兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)
類產(chǎn)品
件和
類產(chǎn)品
件,乙種設(shè)備每天能生產(chǎn)
類產(chǎn)品
件和
類產(chǎn)品
件.已知設(shè)備甲每天的租賃費(fèi)為
元,設(shè)備乙每天的租賃費(fèi)為
元,現(xiàn)該公司至少要生產(chǎn)
類產(chǎn)品
件,
類產(chǎn)品
件,求所需租賃費(fèi)最少為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(
),以橢圓內(nèi)一點(diǎn)
為中點(diǎn)作弦
,設(shè)線段
的中垂線與橢圓相交于
,
兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得
,
,
,
在同一個(gè)圓上,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com