【題目】某幼兒園根據(jù)部分同年齡段的100名女童的身高數(shù)據(jù)繪制了頻率分布直方圖,其中身高的變化范圍是[96,106](單位:厘米),樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106).
(1)求出的值,并求樣本中女童的身高的眾數(shù)和中位數(shù),平均數(shù);
(2)在身高在[100,102),[102,104),[104,106]的三組中,用分層抽樣的方法抽取14名女童,則身高數(shù)據(jù)在[104,106]的女童中應(yīng)抽取多少人數(shù)?
【答案】(1);眾數(shù)為
;中位數(shù)約為
;平均數(shù)為
(2)
【解析】
(1)根據(jù)小矩形的面積之和等于可求
的值;取高度最高的小矩形底邊中點(diǎn)橫坐標(biāo)即為眾數(shù);設(shè)中位數(shù)為
,由
即可求解;利用小矩形的面積與小矩形底邊中點(diǎn)橫坐標(biāo)乘積的所有和即可求解.
(2)根據(jù)三組的比例關(guān)系即可求解.
(1)由,
解得,
由頻率分布直方圖可知,眾數(shù)為,
設(shè)中位數(shù)為,則
,
解得,
平均數(shù)
.
(2)由頻率分布直方圖可知身高在[100,102),[102,104),[104,106]的比例為
,
所以分層抽樣的方法抽取14名女童,
身高數(shù)據(jù)在[104,106]的女童中應(yīng)抽。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點(diǎn)圖判斷,與
哪一個(gè)更適宜作燒水時(shí)間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時(shí)間內(nèi)煤氣輸出量
成正比,那么
為多少時(shí),燒開一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),
,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)寫出曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)若直線與曲線
相交于
、
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題!蹦嘲噌槍(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績,如下表:
(1)求數(shù)學(xué)成績y對(duì)物理成績x的線性回歸方程。若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競賽,求選中的學(xué)生的數(shù)學(xué)成績至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)為
,拋物線
上的點(diǎn)到準(zhǔn)線的最小距離為2.
(1)求拋物線的方程;
(2)若過點(diǎn)作互相垂直的兩條直線
,
,
與拋物線
交于
,
兩點(diǎn),
與拋物線
交于
,
兩點(diǎn),
,
分別為弦
,
的中點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),在極坐標(biāo)(與直角坐標(biāo)系
取相同的長度單位,且以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸)中,圓
的方程為
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線
交于點(diǎn)
,
,若點(diǎn)
的坐標(biāo)為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為
(t為參數(shù)).直線l與曲線C分別交于M,N兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若點(diǎn)P的極坐標(biāo)為,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和為
,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com