日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是,且離心率為;
          (Ⅰ)求曲線的方程;
          (Ⅱ)設(shè)曲線表示曲線軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
          (Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.
          (Ⅰ);(Ⅱ);(Ⅲ).

          試題分析:(Ⅰ)由知圓錐曲線為雙曲線,再由焦點(diǎn)坐標(biāo)知,從而得,即雙曲線的方程是;(Ⅱ)設(shè)出兩點(diǎn)的坐標(biāo),再將直線與曲線方程聯(lián)立,知方程應(yīng)有兩個(gè)根.再由二次項(xiàng)的系數(shù)、根的判別式、以及這兩根應(yīng)為負(fù)根,即兩根之和小于0,兩根之積大于0.從而得到的取值范圍;(Ⅲ)由結(jié)合上問(wèn)的取值范圍從而得到,然后由通過(guò)向量的坐標(biāo)表示得到點(diǎn),代入曲線的方程即可.
          試題解析:(Ⅰ)由知,曲線是以為焦點(diǎn)的雙曲線,且,
          故雙曲線的方程是.                       (3分)
          (Ⅱ)設(shè),聯(lián)立方程組:,
          從而有:為所求.         (8分)
          (Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240318191343298.png" style="vertical-align:middle;" />,
          整理得,
          注意到,所以,故直線的方程為.  (10分)
          設(shè),由已知
          ,所以
          在曲線上,得,
          但當(dāng)時(shí),所得的點(diǎn)在雙曲線的右支上,不合題意,
          所以為所求.                        (13分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓)過(guò)點(diǎn),且橢圓的離心率為.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓經(jīng)過(guò)點(diǎn)
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)線段是橢圓過(guò)點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓.

          (1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿(mǎn)足,且.
          ①證明直線軸交點(diǎn)的位置與無(wú)關(guān);
          ②若∆面積是∆面積的5倍,求的值;
          (2)若圓:.是過(guò)點(diǎn)的兩條互相垂直的直線,其中交圓、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)。
          (1)求雙曲線的方程;
          (2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且L與的兩個(gè)焦點(diǎn)A和B滿(mǎn)足(其中O為原點(diǎn)),求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知兩點(diǎn),點(diǎn)在以為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

          (1)求點(diǎn)的軌跡曲線的方程;
          (2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫(xiě)出曲線在點(diǎn)處的切線的方程;(不要求證明)
          (3)直線過(guò)切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為,證明:直線恒過(guò)一定點(diǎn),并求定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若.
          (Ⅰ)求此橢圓的方程;
          (Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線與橢圓交于、兩點(diǎn)(在第一象限內(nèi)),又、是此橢圓上兩點(diǎn),并且滿(mǎn)足,求證:向量共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          直線過(guò)橢圓的左焦點(diǎn)F,且與橢圓相交于P、Q兩點(diǎn),M為PQ的中點(diǎn),O為原點(diǎn).若△FMO是以O(shè)F為底邊的等腰三角形,則直線l的方程為       

          查看答案和解析>>

          同步練習(xí)冊(cè)答案