日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.

          (1)求橢圓的標準方程;

          (2)若不經(jīng)過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

          【答案】(1);(2)

          【解析】

          (1)由題可知,求得直線的方程,再由點到直線的距離公式,聯(lián)立求得的值,即可得到橢圓的標準方程;

          (2)由直線與圓相切,求得,再把直線方程與圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系和弦長公式,分別求得,即計算求得三角形的周長。

          (1)由題可知,,,則,

          直線的方程為,即,所以,

          解得,,

          ,所以橢圓的標準方程為.

          (2)因為直線與圓相切,

          所以,即.

          設(shè),

          聯(lián)立,得

          所以 ,

          ,,

          所以 .

          ,所以.

          因為 ,

          同理.

          所以,

          所以的周長是,

          的周長為定值.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某項數(shù)學(xué)競賽考試共四道題,考察內(nèi)容分別為代數(shù)、幾何、數(shù)論、組合,已知前兩題每題滿分40分,后兩題每題滿分60分,題目難度隨題號依次遞增,已知學(xué)生甲答題時,若該題會做則必得滿分,若該題不會做則不作答得0分,通過對學(xué)生甲以往測試情況的統(tǒng)計,得到他在同類模擬考試中各題的得分率,如表所示:

          假設(shè)學(xué)生甲每次考試各題的得分相互獨立.

          1)若此項競賽考試四道題的順序依次為代數(shù)、幾何、數(shù)論、組合,試預(yù)測學(xué)生甲考試得160分的概率;

          2)學(xué)生甲研究該項競賽近五年的試題發(fā)現(xiàn)第1題都是代數(shù)題,于是他在賽前針對代數(shù)版塊進行了強化訓(xùn)練,并取得了很大進步,現(xiàn)在,只要代數(shù)題是在試卷第1、2題的位置,他就一定能答對,若今年該項數(shù)學(xué)競賽考試四道題的順序依次為代數(shù)、數(shù)論、組合、幾何,試求學(xué)生甲此次考試得分X的分布列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《周易》是我國古代典籍,用描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中表示一個陽爻,表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為(

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點是拋物線的焦點,是其準線上任意一點,過點作直線,與拋物線相切,,為切點,,軸分別交于兩點.

          1)求焦點的坐標,并證明直線過點;

          2)求四邊形面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護是一項具體有效措施.某市為有效防護疫情,宣傳居民盡可能不外出,鼓勵居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務(wù)公司統(tǒng)一配送(配送費由政府補貼).快遞業(yè)務(wù)主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成5元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

          1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;

          2)若將頻率視為概率,回答下列問題:

          ①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學(xué)期望;

          ②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請你利用所學(xué)過的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數(shù)值大于或等于20.5時,我們說體重較重,當數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

          (Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.

          身高較矮

          身高較高

          合計

          體重較輕

          體重較重

          合計

          (Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:

          編號

          1

          2

          3

          4

          5

          6

          7

          8

          身高

          166

          167

          160

          173

          178

          169

          158

          173

          體重

          57

          58

          53

          61

          66

          57

          50

          66

          根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);

          編號

          1

          2

          3

          4

          5

          6

          7

          8

          體重(kg

          57

          58

          53

          61

          66

          57

          50

          66

          殘差

          ②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.

          參考數(shù)據(jù):

          ,,

          參考公式:,,,

          0.10

          0.05

          0.01

          0.005

          2.706

          3.811

          6.635

          7.879

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,.

          (1)當時,求函數(shù)圖象在處的切線方程;

          (2)若對任意,不等式恒成立,求的取值范圍;

          (3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)討論的單調(diào)性;

          (2)當時,,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,直線的極坐標方程為

          1)求曲線的普通方程和直線的直角坐標方程;

          2)已知點,點為曲線上的動點,求線段的中點到直線的距離的最大值.并求此時點的坐標.

          查看答案和解析>>

          同步練習冊答案