【題目】已知,下面結(jié)論正確的是( )
A.若,
,且
的最小值為π,則ω=2
B.存在ω∈(1,3),使得f(x)的圖象向右平移個單位長度后得到的圖象關(guān)于y軸對稱
C.若f(x)在上恰有7個零點(diǎn),則ω的取值范圍是
D.若f(x)在上單調(diào)遞增,則ω的取值范圍是(0,
]
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知真命題:“函數(shù)的圖象關(guān)于點(diǎn)
成中心對稱圖形”的充要條件為“函數(shù)
是奇函數(shù)”.
(Ⅰ)將函數(shù)的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應(yīng)的函數(shù)解析式,并利用題設(shè)中的真命題求函數(shù)
圖象對稱中心的坐標(biāo);
(Ⅱ)求函數(shù)圖象對稱中心的坐標(biāo);
(Ⅲ)已知命題:“函數(shù)的圖象關(guān)于某直線成軸對稱圖象”的充要條件為“存在實(shí)數(shù)
和
,使得函數(shù)
是偶函數(shù)”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設(shè)的真命題對它進(jìn)行修改,使之成為真命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為
(
為參數(shù)),曲線
上異于原點(diǎn)的兩點(diǎn)
,
所對應(yīng)的參數(shù)分別為
.以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)當(dāng)時,直線
平分曲線
,求
的值;
(2)當(dāng)時,若
,直線
被曲線
截得的弦長為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié),一場突如其來的新型冠狀病毒感染的肺炎疫情,牽動著我們每個人的心,嚴(yán)重擾亂了大家的正常生活,在全國人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三個小區(qū)的志愿者人數(shù)分別為60,40,20,現(xiàn)采用分層抽樣的方法從這120名志愿者中隨機(jī)抽取6人去支援夕陽紅敬老院.若再從這6人中隨機(jī)抽取2名作為負(fù)責(zé)人,則這2名志愿者來自不同小區(qū)的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)為平面直角坐標(biāo)系
中的一個動點(diǎn)(其中
為坐標(biāo)系原點(diǎn)),點(diǎn)
到定點(diǎn)
的距離比到直線
的距離大1,動點(diǎn)
的軌跡方程為
.
(1)求曲線的方程;
(2)若過點(diǎn)的直線
與曲線
相交于
、
兩點(diǎn).
①若,求直線
的直線方程;
②分別過點(diǎn),
作曲線
的切線且交于點(diǎn)
,是否存在以
為圓心,以
為半徑的圓與經(jīng)過點(diǎn)
且垂直于直線
的直線
相交于
、
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的最大值;
(2)設(shè)函數(shù),若對任意實(shí)數(shù)
,當(dāng)
時,函數(shù)
的最大值為
,求a的取值范圍;
(3)若數(shù)列的各項均為正數(shù),
,
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份
之間的相關(guān)關(guān)系.請用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測6月份該商場空調(diào)的銷售量;
(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
有購買意愿對應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)
時,討論
的單調(diào)性;
(2)若,且當(dāng)
時,不等式
在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù) 在
處的切線方程為
,求實(shí)數(shù)
的值;
(2)設(shè),當(dāng)
時,求
的最小值;
(3)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com