日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)設(shè)函數(shù),.
          (Ⅰ)當(dāng)時,上恒成立,求實數(shù)的取值范圍;
          (Ⅱ)當(dāng)時,若函數(shù)上恰有兩個不同零點,求實數(shù)的取值范圍;
          (Ⅲ)是否存在實數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的值,若不存在,說明理由.

          解:(Ⅰ)由a=0,f(x)≥h(x)可得-mlnx≥-x 即 ┉┉┉┉┉┉┉┉1分
          ,則f(x)≥h(x)在(1,+∞)上恒成立等價于.
          求得 ┉┉┉┉┉┉┉┉2分
          當(dāng)時;;當(dāng)時, ┉┉┉┉┉┉┉┉3分
          在x=e處取得極小值,也是最小值,
          ,故. ┉┉┉┉┉┉┉┉4分
          (Ⅱ)函數(shù)k(x)=f(x)-h(x)在[1,3]上恰有兩個不同的零點等價于方程x-2lnx=a,在[1,3]上恰有兩個相異實根。┉┉┉┉┉┉┉┉5分
          令g(x)=x-2lnx,則 ┉┉┉┉┉┉┉┉6分
          當(dāng)時,,當(dāng)時,
          g(x)在[1,2]上是單調(diào)遞減函數(shù),在上是單調(diào)遞增函數(shù)。
           ┉┉┉┉┉┉┉┉8分
          又g(1)=1,g(3)=3-2ln3
          ∵g(1)>g(3),∴只需g(2)<a≤g(3),
          故a的取值范圍是(2-2ln2,3-2ln3) ┉┉┉┉┉┉┉┉9分
          (Ⅲ)存在m=,使得函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性
          ,函數(shù)f(x)的定義域為(0,+∞)。┉┉┉┉┉┉10分
          ,則,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,不合題意;┉┉┉11分
          ,由可得2x2-m>0,解得x>或x<-(舍去)
          時,函數(shù)的單調(diào)遞增區(qū)間為(,+∞)
          單調(diào)遞減區(qū)間為(0, ) ┉┉┉┉┉┉┉┉12分
          而h(x)在(0,+∞)上的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞)
          故只需=,解之得m= ┉┉┉┉┉┉┉┉13分
          即當(dāng)m=時,函數(shù)f(x)和函數(shù)h(x)在其公共定義域上具有相同的單調(diào)性。┉14分.

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)求的單調(diào)區(qū)間;
          (2)設(shè),若對任意,均存在,使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分13分)
          已知.
          (I)求函數(shù)上的最小值;
          (II)對一切恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè),
          (1)求的單調(diào)區(qū)間和最小值;
          (2)討論的大小關(guān)系;
          (3)求的取值范圍,使得對任意>0成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)
          函數(shù),其中為常數(shù).
          (1)證明:對任意,的圖象恒過定點;
          (2)當(dāng)時,判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說明理由;
          (3)若對任意時,恒為定義域上的增函數(shù),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分13分)函數(shù)
          (Ⅰ)若處的切線相互垂直,求這兩個切線方程;
          (Ⅱ)若單調(diào)遞增,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (12分)若直線過點,且與曲線都相切,
          求實數(shù)的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)已知函數(shù).
          (Ⅰ)設(shè),討論的單調(diào)性;
          (Ⅱ)若對任意恒有,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)已知x = 1是的一個極值點
          (I)求b的值;
          (II)求函數(shù)f(x)的單調(diào)減區(qū)間;
          (III)設(shè),試問過點(2,5)可作多少條直線與曲線相切?請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案