(本題15分)已知點

是橢圓
E:

(

)上一點,
F1、
F2分別是橢圓
E的左、右焦點,
O是坐標原點,
PF1⊥
x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設A、B是橢圓E上兩個動點,

(

).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當△PAB面積取得最大值時,求λ的值.
(1)

(2)根據(jù)已知的向量的坐標關系,結(jié)合點差法來得到直線的斜率。
(3)

試題分析:解:(Ⅰ)∵
PF1⊥
x軸,
∴
F1(-1,0),
c=1,
F2(1,0),
|
PF2|=

,2
a=|
PF1|+|
PF2|=4,
a=2,
b2=3,
橢圓
E的方程為:

;…………………4分
(Ⅱ)設
A(
x1,
y1)、
B(
x2,
y2),由

得
(
x1+1,
y1-

)+(
x2+1,
y2-

)=

(1,-

),
所以
x1+
x2=

-2

,
y1+
y2=

(2-

)

………①
又

,

,
兩式相減得3(
x1+
x2)(
x1-
x2)+ 4(
y1+
y2)(
y1-
y2)=0………..②
以①式代入可得
AB的斜率
k=

為定值; ……………9分
(Ⅲ)設直線
AB的方程為
y=
x+
t,
與

聯(lián)立消去
y并整理得
x2+
tx+
t2-3=0, △=3(4-
t2),
AB|=

,
點
P到直線
AB的距離為
d=

,
△
PAB的面積為
S=

|
AB|×
d=

, ………10分
設
f(
t)=
S2=

(
t4-4
t3+16
t-16) (-2<
t<2),
f’(
t)=-3(
t3-3
t2+4)=-3(
t+1)(
t-2)
2,由
f’(
t)=0及-2<
t<2得
t=-1.
當
t∈(-2,-1)時,
f’(
t)>0,當
t∈(-1,2)時,
f’(
t)<0,
f(
t)=-1時取得最大值

,
所以
S的最大值為

.此時
x1+
x2=-
t=1=

-2,

=3. ………………15分
點評:解析幾何中的圓錐曲線的求解,一般運用待定系數(shù)法來求解,同時運用設而不求的思想來研究直線與橢圓的位置關系,屬于中檔題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)己知

、

、

是橢圓

:

(

)上的三點,其中點

的坐標為

,

過橢圓的中心,且

,

。
(Ⅰ)求橢圓

的方程;
(Ⅱ)過點

的直線

(斜率存在時)與橢圓

交于兩點

,

,設

為橢圓

與

軸負半軸的交點,且

,求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設已知橢圓

+

=1(a>b>0)的一個焦點是圓x
2+y
2-6x+8=0的圓心,且短軸長為8,則橢圓的左頂點為( )
A.(-3,0) | B.(-4,0) | C.(-10,0) | D.(-5,0) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知函數(shù)

(其中

且

為常數(shù))的圖像經(jīng)過點A

、B

.

是函數(shù)

圖像上的點,

是

正半軸上的點.
(1) 求

的解析式;
(2) 設

為坐標原點,

是一系列正三角形,記它們的邊長是

,求數(shù)列

的通項公式;
(3) 在(2)的條件下,數(shù)列

滿足

,記

的前

項和為

,證明:

。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知m>1,直線

,橢圓C:

,

、

分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點

時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A


、△B


的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
我國發(fā)射的“神舟七號”飛船的運行軌道是以地球的中心

為一個焦點的橢圓,近地點
A距地面為

千米,遠地點
B距地面為

千米,地球半徑為

千米,則飛船運行軌道的短軸長為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖橢圓

:


的兩個焦點為

、

和頂點

、

構成面積為32的正方形.

(1)求此時橢圓

的方程;
(2)設斜率為

的直線

與橢圓

相交于不同的兩點

、

、

為

的中點,且

. 問:

、

兩點能否關于直線

對稱. 若能,求出

的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為

。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的焦點在y軸上,斜率為1的直線
l與C相交于A,B兩點,且

,求直線
l的方程。
查看答案和解析>>