日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 13、函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,且當(dāng)x>0時,xf′(x)-f(x)>0恒成立,則不等式f(x)>0的解集是
          (-1,0)∪(1,+∞)
          分析:由函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,則f(-1)=f(0)=f(1)=0,則可以將定義域R分為(-∞,-1),(-1,0),(0,1),(1,+∞)四個區(qū)間結(jié)合單調(diào)性進(jìn)行討論,可得答案.
          解答:解:若f(x)在(-∞,-1)上為減函數(shù),
          則f(x)>0,f'(x)<0
          則xf′(x)-f(x)>0不成立
          若f(x)在(-∞,-1)上為增函數(shù),
          則f(x)<0,f'(x)>0
          則xf′(x)-f(x)>0成立
          故:f(x)在(-∞,-1)上時,則f(x)<0
          若f(x)在(-1,0)上為增函數(shù),
          則f(x)<0,f'(x)>0
          則xf′(x)-f(x)>0不成立
          若f(x)在(-∞,-1)上為減函數(shù),
          則f(x)>0,f'(x)<0
          則xf′(x)-f(x)>0成立
          故:f(x)在(-1,0)上時,則f(x)>0
          又∵奇函數(shù)的圖象關(guān)于原點對稱,
          則f(x)在(0,1)上時,則f(x)<0,f(x)在(1,+∞)上時,則f(x)>0
          綜合所述,不等式f(x)>0的解集是(-1,0)∪(1,+∞)
          故答案為:(-1,0)∪(1,+∞)
          點評:解答本題的關(guān)鍵是根據(jù)已知條件,結(jié)合奇函數(shù)的性質(zhì),找出函數(shù)的零點,并以零點為端點將定義域分為幾個不同的區(qū)間,然后在每個區(qū)間上結(jié)合函數(shù)的單調(diào)性進(jìn)行討論,這是分類討論思想在解決問題的巨大作用的最好體現(xiàn),分類討論思想往往能將一個復(fù)雜的問題的簡單化,是高中階段必須要掌握的一種方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
          3
          2
          ,0)時
          ,f(x)=log2(-3x+1),則f(2011)=( 。
          A、-2
          B、2
          C、4
          D、log27

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在N*的函數(shù),且滿足f(f(k))=3k,f(1)=2,設(shè)an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
          (I)求bn的表達(dá)式;
          (II)求證:
          b1
          f(a1)
          +
          b2
          f(a2) 
          +…+
          bn
          f(an)
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實數(shù)x的取值范圍為
          (0,1]
          (0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•臨沂二模)已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈[-e,0)時,f(x)=ax-ln(-x),(a<0,a∈R)
          (I)求f(x)的解析式;
          (Ⅱ)是否存在實數(shù)a,使得當(dāng)x∈(0,e]時f(x)的最大值是-3,如果存在,求出實數(shù)a的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          注:此題選A題考生做①②小題,選B題考生做①③小題.
          已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時有f(x)=
          4xx+4

          ①求f(x)的解析式;
          ②(選A題考生做)求f(x)的值域;
          ③(選B題考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案