【題目】過橢圓:
上一點(diǎn)
向
軸作垂線,垂足為右焦點(diǎn)
,
、
分別為橢圓
的左頂點(diǎn)和上頂點(diǎn),且
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動(dòng)直線與橢圓
交于
、
兩點(diǎn),且以
為直徑的圓恒過坐標(biāo)原點(diǎn)
.問是否存在一個(gè)定圓與動(dòng)直線
總相切.若存在,求出該定圓的方程;若不存在,請(qǐng)說明理由.
【答案】(1)(2)存在
【解析】試題分析:(1)由得
,解得
,
,,結(jié)合
,即可求橢圓
的方程;(2)先求得直線
的斜率不存在及斜率為零時(shí)圓的方程,由此可得兩圓所過公共點(diǎn)為原點(diǎn)
,當(dāng)直線
的斜率存在且不為零時(shí),設(shè)直線
的方程為
代入橢圓方程消掉
得
的二次方程,設(shè)
,由韋達(dá)定理、向量數(shù)量積可得
的表達(dá)式,再根據(jù)線圓相切可得
的關(guān)系式,代入上述表達(dá)式可求得
,由此可得結(jié)論.
試題解析:(1)由題意得,所以
,
.由
得
,解得
,
,
由,得
,
,橢圓
的方程為
.
(2)假設(shè)存在這樣的圓.設(shè),
.
由已知,以為直徑的圓恒過原點(diǎn)
,即
,所以
.
當(dāng)直線垂直于
軸時(shí),
,
,所以
,又
,解得
,
不妨設(shè),
或
,
,即直線
的方程為
或
,此時(shí)原點(diǎn)
到直線
的距離為
.
當(dāng)直線的斜率存在時(shí),可設(shè)直線
的方程為
,解
消去
得方程:
,因?yàn)橹本
與橢圓
交于
,
兩點(diǎn),所以方程的判別式
,即
,且
,
.
由,得
,
所以
,整理得
(滿足
).
所以原點(diǎn)到直線
的距離
.綜上所述,原點(diǎn)
到直線
的距離為定值
,即存在定圓
總與直線
相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
已知如下等式: ,
,
,
當(dāng)時(shí),試猜想
的值,并用數(shù)學(xué)歸納法給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位職工義務(wù)獻(xiàn)血,在體檢合格的人中, 型血的共有28人,
型血的共有7人,
型血的共有9人,
型血的有3人.
(1)從中任選1人去獻(xiàn)血,有多少種不同的選法?
(2)從四種血型的人中各選1人去獻(xiàn)血,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosωx,sinωx),
=(cosωx,
cosωx),其中ω>0,設(shè)函數(shù)f(x)=
.
(1)若函數(shù)f(x)的最小正周期是π,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心的橫坐標(biāo)為 ,求ω的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2sinxcosx+2cos2x﹣1.
(1)求f(x)的最大值,以及該函數(shù)取最大值時(shí)x的取值集合;
(2)在△ABC中,a、b、c分別是角A、B、C所對(duì)的邊長(zhǎng),且,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)若函數(shù)在
處的切線與直線
垂直,求
的值;
(Ⅱ)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說明理由;
(Ⅲ)若,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年部組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);
(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績(jī)?cè)?/span>段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績(jī)的次數(shù)為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2015高考湖北】如圖,圓C與x軸相切于點(diǎn)T(1,0),與y軸正半軸交于兩點(diǎn)A,B(B在A的上方),且|AB|=2.
(1)圓C的標(biāo)準(zhǔn)方程為________.
(2)過點(diǎn)A任作一條直線與圓O:x2+y2=1相交于M,N兩點(diǎn),下列三個(gè)結(jié)論:
①=
;②
-
=2;
③+
=2
.
其中正確結(jié)論的序號(hào)是________(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,
分別是
的中點(diǎn).
(1)證明:平面平面
;
(2)棱上是否存在點(diǎn)
,使
平面
?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com