【題目】已知函數(shù),
.
(Ⅰ)試討論的單調(diào)性;
(Ⅱ)記的零點(diǎn)為
,
的極小值點(diǎn)為
,當(dāng)
時(shí),求證
.
【答案】(Ⅰ)詳見解析(Ⅱ)見解析
【解析】
(Ⅰ)對函數(shù)f(x)求導(dǎo),分和a<0進(jìn)行討論,可得函數(shù)單調(diào)性;(Ⅱ)對函數(shù)g(x)求導(dǎo),分析
單調(diào)性,由零點(diǎn)存在性定理可確定
的零點(diǎn)即
極小值點(diǎn)
,從而得到a與
的等量關(guān)系,將等量關(guān)系代入
中,利用函數(shù)f(x)的單調(diào)性即可得到證明.
解:(Ⅰ)
.
若,則
,
在
上單調(diào)遞增;
若,則
必有一正一負(fù)兩根,且正根為
.
當(dāng),
,
在
上單調(diào)遞增;
當(dāng),
,
在
上單調(diào)遞減.
綜上可知,當(dāng)時(shí),
在
上單調(diào)遞增;
當(dāng)時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減.
(Ⅱ),
,
所以在
單調(diào)遞增.
又,
,
故存在零點(diǎn)
,且
在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
即為的
極小值點(diǎn),
故.
由知,
,
所以
,
又,所以
.
由(Ⅰ)可知,時(shí),
在
單調(diào)遞增,
因此.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,﹣2),B(4,0),圓C經(jīng)過點(diǎn)(0,﹣1),(0,1)及(,0).斜率為k的直線l經(jīng)過點(diǎn)B.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)k=2時(shí),過直線l上的一點(diǎn)P向圓C引一條切線,切點(diǎn)為Q,且滿足PQ=,求點(diǎn)P的坐標(biāo);
(3)設(shè)M,N是圓C上任意兩個(gè)不同的點(diǎn),若以MN為直徑的圓與直線l都沒有公共點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時(shí),周日測試
方式二:周六一天培訓(xùn)4小時(shí),周日測試
公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組
先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間
精確到
,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
底面
,△ABC是邊長為
的正三角形,
,D,E分別為AB,BC的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在一點(diǎn)M,使
平面
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角坐標(biāo)系的原點(diǎn)和極坐標(biāo)系
的極點(diǎn)重合,
軸非負(fù)半軸與極軸重合, 單位長度相同, 在直角坐標(biāo)系下, 曲線
的參數(shù)方程為
,
為參數(shù)) .
(1) 寫出曲線的極坐標(biāo)方程;
(2) 直線的極坐標(biāo)方程為
,求曲線
與直線
在平面直角坐標(biāo)系中的交點(diǎn)坐標(biāo) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓
:
,直線
:
,直線
過點(diǎn)
,傾斜角為
,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線與圓
的交點(diǎn)極坐標(biāo)及直線
的參數(shù)方程;
(2)設(shè)直線與圓
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線
與函數(shù)
的圖象在
處相切,設(shè)
,若在區(qū)間[1,2]上,不等式
恒成立.則實(shí)數(shù)m( )
A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以
為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求與
的直角坐標(biāo)方程;
(Ⅱ)若與
的交于
點(diǎn),
與
交于
、
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(1)若函數(shù)在
上是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),是否存在
,使得
和
的圖象在
處的切線互相平行,若存在,請給予證明,若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com