日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù), .

          (Ⅰ)試討論的單調(diào)性;

          (Ⅱ)記的零點(diǎn)為的極小值點(diǎn)為,當(dāng)時(shí),求證.

          【答案】(Ⅰ)詳見解析(Ⅱ)見解析

          【解析】

          (Ⅰ)對函數(shù)f(x)求導(dǎo),分和a<0進(jìn)行討論,可得函數(shù)單調(diào)性;(Ⅱ)對函數(shù)g(x)求導(dǎo),分析單調(diào)性,由零點(diǎn)存在性定理可確定的零點(diǎn)即極小值點(diǎn),從而得到a與的等量關(guān)系,將等量關(guān)系代入中,利用函數(shù)f(x)的單調(diào)性即可得到證明.

          (Ⅰ) .

          ,則上單調(diào)遞增;

          ,則必有一正一負(fù)兩根,且正根為.

          當(dāng),上單調(diào)遞增;

          當(dāng),,上單調(diào)遞減.

          綜上可知,當(dāng)時(shí),上單調(diào)遞增;

          當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減.

          (Ⅱ),,

          所以單調(diào)遞增.

          ,,

          存在零點(diǎn),且在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,即為的極小值點(diǎn),

          .

          知,

          所以 ,

          ,所以.

          由()可知,時(shí),單調(diào)遞增,

          因此.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,﹣2),B(4,0),圓C經(jīng)過點(diǎn)(0,﹣1),(01)(,0).斜率為k的直線l經(jīng)過點(diǎn)B

          1)求圓C的標(biāo)準(zhǔn)方程;

          2)當(dāng)k2時(shí),過直線l上的一點(diǎn)P向圓C引一條切線,切點(diǎn)為Q,且滿足PQ,求點(diǎn)P的坐標(biāo);

          3)設(shè)MN是圓C上任意兩個(gè)不同的點(diǎn),若以MN為直徑的圓與直線l都沒有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

          方式一:周一到周五每天培訓(xùn)1小時(shí),周日測試

          方式二:周六一天培訓(xùn)4小時(shí),周日測試

          公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:

          第一周

          第二周

          第三周

          第四周

          甲組

          20

          25

          10

          5

          乙組

          8

          16

          20

          16

          用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

          在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,底面,△ABC是邊長為的正三角形,,D,E分別為AB,BC的中點(diǎn).

          (Ⅰ)求證:平面;

          (Ⅱ)求二面角的余弦值;

          (Ⅲ)在線段上是否存在一點(diǎn)M,使平面?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直角坐標(biāo)系的原點(diǎn)和極坐標(biāo)系的極點(diǎn)重合,軸非負(fù)半軸與極軸重合, 單位長度相同, 在直角坐標(biāo)系下, 曲線的參數(shù)方程為,為參數(shù)) .

          (1) 寫出曲線的極坐標(biāo)方程;

          (2) 直線的極坐標(biāo)方程為,求曲線與直線在平面直角坐標(biāo)系中的交點(diǎn)坐標(biāo) .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,圓,直線,直線過點(diǎn),傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

          (1)寫出直線與圓的交點(diǎn)極坐標(biāo)及直線的參數(shù)方程;

          (2)設(shè)直線與圓交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,直線與函數(shù)的圖象在處相切,設(shè),若在區(qū)間[1,2]上,不等式恒成立.則實(shí)數(shù)m( )

          A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為

          (Ⅰ)求的直角坐標(biāo)方程;

          (Ⅱ)若的交于點(diǎn),交于、兩點(diǎn),求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,.

          1)若函數(shù)上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

          2)當(dāng)時(shí),是否存在,使得的圖象在處的切線互相平行,若存在,請給予證明,若不存在,請說明理由

          查看答案和解析>>

          同步練習(xí)冊答案