日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)是橢圓與雙曲線的一個(gè)交點(diǎn),是橢圓的左右焦點(diǎn),則      
          由橢圓和雙曲線方程可知橢圓與雙曲線的焦點(diǎn)相同。不妨設(shè)點(diǎn)在雙曲線的右支上,則有,,,從而可得。所以
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知點(diǎn)分別為橢圓的左、右焦點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),到焦點(diǎn)的距離的最大值為,且的最大面積為.
          (I)求橢圓的方程。
          (II)點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn)。對(duì)于任意的是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分14分)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到
          兩個(gè)焦點(diǎn)的距離之和為,離心率.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)橢圓的左、右焦點(diǎn)分別為,過(guò)點(diǎn)的直線與該橢圓交于點(diǎn)、,
          、為鄰邊作平行四邊形,求該平行四邊形對(duì)角線的長(zhǎng)度
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的左、右焦點(diǎn)分別為,且經(jīng)過(guò)定點(diǎn),為橢圓上的動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作圓.
          (1)求橢圓的方程;
          (2)若圓軸有兩個(gè)不同交點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍;
          (3)是否存在定圓,使得圓與圓恒相切?若存在,求出定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          橢圓的中心、右焦點(diǎn)、右頂點(diǎn)及右準(zhǔn)線與x軸的交點(diǎn)依次為O、F、G、H,則的最大值為(   )
          A.B.C.D.不確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,橢圓上的點(diǎn)到焦點(diǎn)的距離為2,的中點(diǎn),則為坐標(biāo)原點(diǎn))的值為
          A.8B.2C.4D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為為橢圓上一點(diǎn),的面積為
          (1)求橢圓的方程;
          (2)是否存在平行于的直線,使得直線與橢圓相交于兩點(diǎn),且以線段為有經(jīng)的圓恰好經(jīng)過(guò)原點(diǎn)?若存在,求出的方程,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          橢圓的離心率為(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分15分)已知橢圓的兩焦點(diǎn)為F1),F2(1,0),直線x = 4是橢圓的一條準(zhǔn)線.
          (1)求橢圓方程;
          (2)設(shè)點(diǎn)P在橢圓上,且,求cos∠F1PF2的值;
          (3)設(shè)P是橢圓內(nèi)一點(diǎn),在橢圓上求一點(diǎn)Q,使得最小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案