日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,的內心為,、、分別是邊、的中點,證明:直線平分的周長.

          【答案】見解析

          【解析】

          如圖①,不妨設的內切圓切、、、、

          圖①

          作內切圓的直徑,過的切線分別交、,則

          由于的旁切圓,,因,,

          所以有

          延長,則,因此

          的中位線,所以,

          因四邊形為平行四邊形,所以,相似比為

          同理,,相似比為

          又注意,相似比均為,

          既然有,所以,

          因此,,即所證結論成立.

          附注 在幾何題中用到三角形內切圓的一個基本性質.

          如圖②,在中,內切圓

          的直徑,若,則

          證明:過,點分別在、上.

          的半徑為,,,,

          連結、、,由于、分別平分一對互補角,

          所以,且,則

          同理,則,,

          所以,則

          又由,得,所以

          根據(jù)①②式得,,所以,即

          由此得,,即,也就是.(同時也有.)

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為。

          (Ⅰ)求的極坐標方程;

          (Ⅱ)設點的極坐標為,求面積的最小值。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,三棱柱中,,平面平面.

          (1)求證:;

          (2)若,直線與平面所成角為,的中點,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】棋盤上標有第0,1,2,100站,棋子開始時位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營)或第100站(失敗集中營)是,游戲結束.設棋子跳到第n站的概率為.

          1)求的值;

          2)證明:;

          3)求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知平面,點的中點.

          1)求證:平面平面;

          2)求直線與平面所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】中,,AC,AB邊上的中線長之和等于9

          1)求重心M的軌跡方程;

          2)求頂點A的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在公差不為零的等差數(shù)列{an}中,a4=10,且a3、a6a10成等比數(shù)列.

          1)求{an}的通項公式;

          2)設bn=,求數(shù)列{bn}的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          是否存在,使得,按照某種順序成等差數(shù)列?若存在,請確定的個數(shù);若不存在,請說明理由;

          求實數(shù)與正整數(shù),使得內恰有個零點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):

          經(jīng)計算: , , , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .

          (1)若用線性回歸模型,求關于的回歸方程(結果精確到);

          (2)若用非線性回歸模型求得關于的回歸方程為,且相關指數(shù)為.

          (i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

          (ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(shù)(結果取整數(shù)).

          附:對于一組數(shù)據(jù) ,……, ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關指數(shù)為: .

          查看答案和解析>>

          同步練習冊答案