【題目】某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是( )
A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)
B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大
C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)
D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
為
的導(dǎo)函數(shù).
(1)求證:在
上存在唯一零點(diǎn);
(2)求證:有且僅有兩個(gè)不同的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)
,其中
,
是
的一個(gè)極值點(diǎn),且
.
(1)討論的單調(diào)性
(2)求實(shí)數(shù)和a的值
(3)證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的公差不為零,且
,
、
、
成等比數(shù)列,數(shù)列
滿足
(1)求數(shù)列、
的通項(xiàng)公式;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()若
,求
在
處的切線方程.
()求
在區(qū)間
上的最小值.
()若
在區(qū)間
上恰有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是( )
A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)
B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大
C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)
D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(
),將曲線
向左平移2個(gè)單位長(zhǎng)度得到曲線
.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)設(shè)直線與曲線
交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷售公司在當(dāng)?shù)?/span>、
兩家超市各有一個(gè)銷售點(diǎn),每日從同一家食品廠一次性購(gòu)進(jìn)一種食品,每件200元,統(tǒng)一零售價(jià)每件300元,兩家超市之間調(diào)配食品不計(jì)費(fèi)用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購(gòu)進(jìn)食品數(shù)量,為此搜集并整理了
、
兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),
表示銷售公司每日共需購(gòu)進(jìn)食品的件數(shù).
(1)求的分布列;
(2)以銷售食品利潤(rùn)的期望為決策依據(jù),在與
之中選其一,應(yīng)選哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的直角坐標(biāo)方程;
(2)把曲線向下平移
個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的
倍得到曲線
(縱坐標(biāo)不變),設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com