日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是( )

          A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)

          B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大

          C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)

          D.20187月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)

          【答案】D

          【解析】

          根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.

          由繪制出的折線圖知:

          A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;

          B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;

          C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;

          D中,從20187月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.

          故選:D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),的導(dǎo)函數(shù).

          (1)求證:上存在唯一零點(diǎn);

          (2)求證:有且僅有兩個(gè)不同的零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),函數(shù),其中,的一個(gè)極值點(diǎn),且.

          1)討論的單調(diào)性

          2)求實(shí)數(shù)a的值

          3)證明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等差數(shù)列的公差不為零,且,、成等比數(shù)列,數(shù)列滿足

          1)求數(shù)列、的通項(xiàng)公式;

          2)求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          )若,求處的切線方程.

          )求在區(qū)間上的最小值.

          )若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是( )

          A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)

          B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大

          C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)

          D.20187月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.

          1)求曲線的普通方程和極坐標(biāo)方程;

          2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某銷售公司在當(dāng)?shù)?/span>、兩家超市各有一個(gè)銷售點(diǎn),每日從同一家食品廠一次性購(gòu)進(jìn)一種食品,每件200元,統(tǒng)一零售價(jià)每件300元,兩家超市之間調(diào)配食品不計(jì)費(fèi)用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購(gòu)進(jìn)食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):

          銷售件數(shù)

          8

          9

          10

          11

          頻數(shù)

          20

          40

          20

          20

          以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購(gòu)進(jìn)食品的件數(shù).

          (1)求的分布列;

          (2)以銷售食品利潤(rùn)的期望為決策依據(jù),在之中選其一,應(yīng)選哪個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求的普通方程和的直角坐標(biāo)方程;

          2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案