日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.有下列四個(gè)命題:

          :恰有四支球隊(duì)并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;

          :每支球隊(duì)都既有勝又有敗的概率為 :五支球隊(duì)成績(jī)并列第一名的概率為.

          其中真命題是

          A. ,, B. ,, C. .. D. ..

          【答案】A

          【解析】支球隊(duì)單循環(huán),共舉行場(chǎng)比賽,共有次勝次負(fù).由于以獲勝場(chǎng)次數(shù)作為球隊(duì)的成績(jī).就算四支球隊(duì)都勝場(chǎng),則第五支球隊(duì)也無法勝場(chǎng),若四支球隊(duì)都勝場(chǎng),則第五支球隊(duì)也勝場(chǎng),五支球隊(duì)并列第一,除此不會(huì)再有四支球隊(duì)勝場(chǎng)次數(shù)相同.故是真命題;會(huì)出現(xiàn)兩支球隊(duì)勝場(chǎng),剩下三支球隊(duì)中兩支球隊(duì)各勝場(chǎng),另一支球隊(duì)勝場(chǎng)的情況,此時(shí)兩支球隊(duì)并列第一名.故為真命題;由題可知球隊(duì)成績(jī)并列第一名,各勝一場(chǎng)的概率為小于.排除.故本題答案選

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), ),曲線處的切線方程為.

          (Ⅰ)求, 的值;

          (Ⅱ)證明: ;

          (Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ),若的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】三棱錐P﹣ABC中,PO⊥面ABC,垂足為O,若PA⊥BC,PC⊥AB,求證:
          (1)AO⊥BC
          (2)PB⊥AC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列滿足: .

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若,求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= 是奇函數(shù).
          (1)求實(shí)數(shù)a的值;
          (2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
          (3)若對(duì)任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,過左焦點(diǎn)F且垂直于x軸的直線與橢圓相交,所得弦長(zhǎng)為1,斜率為 ()的直線過點(diǎn),且與橢圓相交于不同的兩點(diǎn). 

          (Ⅰ)求橢圓的方程;

          (Ⅱ)在軸上是否存在點(diǎn),使得無論取何值, 為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某網(wǎng)絡(luò)營(yíng)銷部門為了統(tǒng)計(jì)某市網(wǎng)友2016年12月12日的網(wǎng)購(gòu)情況,從該市當(dāng)天參與網(wǎng)購(gòu)的顧客中隨機(jī)抽查了男女各30人,統(tǒng)計(jì)其網(wǎng)購(gòu)金額,得到如下頻率分布直方圖:

          網(wǎng)購(gòu)達(dá)人

          非網(wǎng)購(gòu)達(dá)人

          合計(jì)

          男性

          30

          女性

          12

          30

          合計(jì)

          60

          若網(wǎng)購(gòu)金額超過千元的顧客稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過千元的顧客稱為“非網(wǎng)購(gòu)達(dá)人”.

          (Ⅰ)若抽取的“網(wǎng)購(gòu)達(dá)人”中女性占12人,請(qǐng)根據(jù)條件完成上面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購(gòu)達(dá)人”與性別有關(guān)?

          (Ⅱ)該營(yíng)銷部門為了進(jìn)一步了解這名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法確定12人,若需從這12人中隨機(jī)選取人進(jìn)行問卷調(diào)查.設(shè)為選取的人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.

          (參考公式: ,其中

          P()

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,角, 的對(duì)邊分別為, , .已知

          (1)求角的大;

          2)若, 的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x
          (1)求函數(shù)f(x)在R上的解析式;
          (2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案