【題目】已知橢圓的離心率為
,過左焦點(diǎn)F且垂直于x軸的直線與橢圓
相交,所得弦長(zhǎng)為1,斜率為
(
)的直線
過點(diǎn)
,且與橢圓
相交于不同的兩點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在點(diǎn)
,使得無論
取何值,
為定值?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)(2)存在點(diǎn)M(2,0)滿足題意,且常數(shù)為0.
【解析】試題分析:(I)由題意可知得的值,即可求解橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)在軸上存在點(diǎn)
滿足題意,設(shè)直線
的方程可設(shè)為
與橢圓的方程聯(lián)立方程組,得出
和
,利用
,求得
,即可確定結(jié)論.
試題解析:(I)由題意可知橢圓過點(diǎn)
,則
,
又
解得,則橢圓方程
.
(II)設(shè)在x軸上存在點(diǎn)M(t,0)滿足題意,
直線
過點(diǎn)(1, 0)且斜率為k,則直線
的方程可設(shè)為:
由 可知:
易知: 設(shè)
則:
由題可設(shè):
對(duì)任意實(shí)數(shù)
恒成立;
解得:
存在點(diǎn)M(2,0)滿足題意,且常數(shù)為0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 +y2=1的左右焦點(diǎn)分別為F1 , F2 , 直線l過橢圓的右焦點(diǎn)F2與橢圓交于A,B 兩點(diǎn), (Ⅰ)當(dāng)直線l的斜率為1,點(diǎn)P為橢圓上的動(dòng)點(diǎn),滿足使得△ABP的面積為
的點(diǎn)P有幾個(gè)?并說明理由.
(Ⅱ)△ABF1的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)直線l的方程,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意實(shí)數(shù)a,b,c,d,以下四個(gè)命題中的真命題是( )
A.若a>b,c≠0則ac>bc
B.若a>b>o,c>d則ac>bd
C.若a>b,則
D.若ac2>bc2則a>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是
.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.有下列四個(gè)命題:
:恰有四支球隊(duì)并列第一名為不可能事件;
:有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;
:每支球隊(duì)都既有勝又有敗的概率為
;
:五支球隊(duì)成績(jī)并列第一名的概率為
.
其中真命題是
A. ,
,
B.
,
,
C.
.
.
D.
.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓
過點(diǎn)
,
,
分別為橢圓
的右、下頂點(diǎn),且
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓
內(nèi),滿足直線
,
的斜率乘積為
,且直線
,
分別交橢圓
于點(diǎn)
,
.
(i) 若,
關(guān)于
軸對(duì)稱,求直線
的斜率;
(ii) 求證: 的面積與
的面積相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線段A1P長(zhǎng)度的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為原點(diǎn)
,焦點(diǎn)為圓
的圓心
.經(jīng)過點(diǎn)
的直線
交拋物線
于
兩點(diǎn),交圓
于
兩點(diǎn),
在第一象限,
在第四象限.
(1)求拋物線的方程;
(2)是否存在直線,使
是
與
的等差中項(xiàng)?若存在,求直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com