【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:∵數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
∴a1+a4=9,a1a4=a2a3=8.
解得a1=1,a4=8或a1=8,a4=1(舍),
解得q=2,即數(shù)列{an}的通項(xiàng)公式an=2n﹣1
(2)解:Sn= =2n﹣1,
∴bn= =
=
﹣
,
∴數(shù)列{bn}的前n項(xiàng)和Tn= +…+
﹣
=
﹣
=1﹣
【解析】(1)根據(jù)等比數(shù)列的通項(xiàng)公式求出首項(xiàng)和公比即可,求數(shù)列{an}的通項(xiàng)公式;(2)求出bn= ,利用裂項(xiàng)法即可求數(shù)列{bn}的前n項(xiàng)和Tn .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
為拋物線
上的兩個(gè)動(dòng)點(diǎn),其中
,且
(1)求證:線段的垂直平分線恒過定點(diǎn)
,并求出
點(diǎn)坐標(biāo);
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=kx﹣1與雙曲線x2﹣y2=1的左支交于A,B兩點(diǎn).
(1)求斜率k的取值范圍;
(2)若直線l2經(jīng)過點(diǎn)P(﹣2,0)及線段AB的中點(diǎn)Q且l2在y軸上截距為﹣16,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓的一個(gè)短軸端點(diǎn)及兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
,圓C方程為
.
(1)求橢圓及圓C的方程;
(2)過原點(diǎn)O作直線l與圓C交于A,B兩點(diǎn),若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
,
.
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知拋物線的焦點(diǎn)坐標(biāo)為
,過
的直線交拋物線
于
兩點(diǎn),直線
分別與直線
:
相交于
兩點(diǎn).
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵樹.乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.
(注:方差 ,其中
為x1 , x2 , …xn的平均數(shù))
(1)如果X=8,求乙組同學(xué)植樹棵樹的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,某拋物線的頂點(diǎn)為原點(diǎn)
,焦點(diǎn)為圓心
,經(jīng)過點(diǎn)
的直線
交圓
于
,
兩點(diǎn),交此拋物線于
,
兩點(diǎn),其中
,
在第一象限,
,
在第二象限.
(1)求該拋物線的方程;
(2)是否存在直線,使
是
與
的等差中項(xiàng)?若存在,求直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com