日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣
          (1)求橢圓C的方程;
          (2)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長(zhǎng)的取值范圍.

          【答案】
          (1)

          解:由已知2a=2 ,解得a= ,記點(diǎn)P(x0,y0),

          ∵kOM= ,∴kOM = = = ,

          又點(diǎn)P(x0,y0)在橢圓上,故 =1,∴kOM =﹣ =﹣

          ,∴b2=1,∴橢圓的方程為


          (2)

          解:設(shè)直線l:y=k(x+1),聯(lián)立直線與橢圓方程 ,

          得(2k2+1)x2+4k2x+2k2﹣2=0,記A(x1,y1),B(x2,y2).

          由韋達(dá)定理可得 ,

          可得

          故AB中點(diǎn) ,

          QN直線方程: ,

          ,已知條件得: ,∴0<2k2<1,

          ,

          ,∴


          【解析】(1)由已知2a=2 ,解得a= ,記點(diǎn)P(x0 , y0),kOM= ,可得kOM = 利用斜率計(jì)算公式及其點(diǎn)P(x0 , y0)在橢圓上,即可得出.(2)設(shè)直線l:y=k(x+1),聯(lián)立直線與橢圓方程得(2k2+1)x2+4k2x+2k2﹣2=0,記A(x1 , y1),B(x2 , y2).利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式、弦長(zhǎng)公式即可得出.
          【考點(diǎn)精析】掌握橢圓的標(biāo)準(zhǔn)方程是解答本題的根本,需要知道橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某輿情機(jī)構(gòu)為了解人們對(duì)某事件的關(guān)注度,隨機(jī)抽取了人進(jìn)行調(diào)查,其中女性中對(duì)該事件關(guān)注的占,而男性有人表示對(duì)該事件沒有關(guān)注.

          關(guān)注

          沒關(guān)注

          合計(jì)

          合計(jì)

          (1)根據(jù)以上數(shù)據(jù)補(bǔ)全列聯(lián)表;

          (2)能否有的把握認(rèn)為“對(duì)事件是否關(guān)注與性別有關(guān)”?

          (3)已知在被調(diào)查的女性中有名大學(xué)生,這其中有名對(duì)此事關(guān)注.現(xiàn)在從這名女大學(xué)生中隨機(jī)抽取人,求至少有人對(duì)此事關(guān)注的概率.

          附表:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于的一元二次方程.

          (1)若,求方程有實(shí)根的概率;

          (2)若,,求方程有實(shí)根的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某手機(jī)廠商推出一款6吋大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)用戶(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

          女性用戶

          分值區(qū)間

          [50,60)

          [60,70)

          [70,80)

          [80,90)

          [90,100]

          頻數(shù)

          20

          40

          80

          50

          10

          男性用戶

          分值區(qū)間

          [50,60)

          [60,70)

          [70,80)

          [80,90)

          [90,100]

          頻數(shù)

          45

          75

          90

          60

          30

          (Ⅰ)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評(píng)分更穩(wěn)定(不計(jì)算具體值,給出結(jié)論即可);

          (Ⅱ)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件。已知設(shè)備甲每天的租賃費(fèi)為200元,設(shè)備乙每天的租賃費(fèi)為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定點(diǎn),圓C ,

          (1)過點(diǎn)向圓C引切線l,求切線l的方程;

          (2)過點(diǎn)A作直線 交圓C于P,Q,且,求直線的斜率k;

          (3)定點(diǎn)M,N在直線 上,對(duì)于圓C上任意一點(diǎn)R都滿足,試求M,N兩點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l: 為參數(shù)).
          (1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
          (2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點(diǎn)P的極坐標(biāo)為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
          (1)求a+b的值;
          (2)若 恒成立,求實(shí)數(shù)m的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案