日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在正三角形中,、分別是、、邊上的點,滿足(如圖1).將△沿折起到的位置,使二面角成直二面角,連結(jié)、(如圖2)
              
          (Ⅰ)求證:⊥平面
          (Ⅱ)求二面角的余弦值.

          (Ⅰ)取BE的中點D,連結(jié)DF∵AEEB=CFFA=12,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,AE=DE=1,∴EF⊥AD,在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.∴A1E⊥BE∴A1E⊥平面BEF,即A1E⊥平面BEP(Ⅱ)

          解析試題分析:不妨設(shè)正三角形ABC 的邊長為 3 .

          (I)在圖1中,取BE的中點D,連結(jié)DF.
          ∵AEEB=CFFA=12,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,
          又AE=DE=1,∴EF⊥AD.    2分
          在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.
          由題設(shè)條件知此二面角為直二面角,∴A1E⊥BE.
          又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP.   .4分
          (II)建立分別以ED、EF、EA為x軸、y軸、z軸的空間直角坐標(biāo)系,則E(0,0,0),A(0,0,1),
          B(2,0,0),F(0, ,0), P (1, ,0),則,
          設(shè)平面ABP的法向量為,
          平面ABP知,,即
          ,得,
          ,設(shè)平面AFP的法向量為
          平面AFP知,,即
          ,得,
          ,
          所以二面角B-A1P-F的余弦值是               13分
          考點:線面垂直的判定及二面角的求解
          點評:證明線面垂直主要通過已知中的垂直的直線來推理,其重要注意翻折前后保持不變的量;第二問二面角的求解充分把握好從點E出發(fā)的三線兩兩垂直建立空間坐標(biāo)系,通過兩面的法向量的夾角得到二面角

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動點.


          (1)求四棱錐P-ABCD的體積;
          (2)是否不論點E在何位置,都有BD⊥AE?證明你的結(jié)論;
          (3)若點E為PC的中點,求二面角D-AE-B的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知空間四邊形中,,的中點.

          (Ⅰ)求證:平面CDE;
          (Ⅱ)若G為的重心,試在線段AE上確定一點F,使得GF//平面CDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,

          (I) 求證:平面PAD⊥平面PCD
          (II)求二面角A-PC-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知菱形,其邊長為2,,繞著順時針旋轉(zhuǎn)得到,的中點.

          (1)求證:平面;
          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知四棱錐的底面是等腰梯形,分別是的中點.

          (1)求證:;
          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,

          (1)若的中點,求證:平面
          (2)求平面與平面所成銳二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在正方體中,是棱的中點.

          (Ⅰ)證明:平面;
          (Ⅱ)證明: .

          查看答案和解析>>

          同步練習(xí)冊答案