日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】袋子中放有大小和形狀相同的小球若干個,其中標(biāo)號為0的小球1,標(biāo)號為1的小球1,標(biāo)號為2的小球n.已知從袋子中隨機抽取1個小球,取到標(biāo)號是2的小球的概率是.

          (1)n的值;

          (2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.

          記事件A表示a+b=2”,求事件A的概率;

          在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件x2+y2>(a-b)2恒成立的概率.

          【答案】(1)2;(2)①. ;②. .

          【解析】試題分析:(1)根據(jù)從袋子隨機抽取1個小球,取到標(biāo)號為2的小球的概率是,可求n的值; (2)從袋子中不放回地隨機抽取2個球,共有基本事件12個,其中“a+b=2”為事件A的基本事件有4個,故可求概率;
          記“x2+y2>(a-b)2恒成立”為事件B,則事件B等價于“x2+y2>4恒成立, (x,y)可以看成平面中的點,確定全部結(jié)果所構(gòu)成的區(qū)域,事件B構(gòu)成的區(qū)域,即可求得結(jié)論.

          試題解析:(1)由題意可知, ,解得n=2.

          (2)①不放回地隨機抽取2個小球的所有基本事件為(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12個.

          事件A包含的基本事件為(0,21),(0,22),(21,0),(22,0),共4個,所以P(A)= .

          “x2+y2>(a-b)2恒成立為事件B,則事件B等價于“x2+y2>4”,(x,y)可以看成平面中的點,則全部結(jié)果所構(gòu)成的區(qū)域Ω={(x,y)|0≤x≤2,0≤y≤2,x,yR},而事件B所構(gòu)成的區(qū)域B={(x,y)|x2+y2>4,(x,y)Ω},所以P(B)= =1-.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮,一般地早潮叫潮,晚潮叫汐,在通常的情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋。下面是某港口某季節(jié)一天的時間與水深的關(guān)系表:

          時刻(

          0:00

          3:00

          6:00

          9:00

          12:00

          15:00

          18:00

          21:00

          24:00

          水深/米(

          5

          7.6

          5.0

          2.4

          5.0

          7.6

          5.0

          2.4

          5.0

          (1)選用一個函數(shù)來近似描述這個港口的水深與時間的函數(shù)關(guān)系,并分別求出10:00時和13:00時的水深近似數(shù)值。

          (2)若某船的吃水深度(船底與水面的距離)為4.5米,安全條例規(guī)定至少要有1.8米的安全間隙(船底與洋底的距離),該船何時能進入港口,在港口能呆多久?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】獵人在相距100 m處射擊一野兔,命中的概率為,若第一次未擊中,則獵人進行第二次射擊,但距離已是150 m,若又未擊中,則獵人進行第三次射擊,但距離已是200 m,已知此獵人命中的概率與距離的平方成反比,求射擊不超過三次擊中野兔的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是直角梯形, ,

          ,點在線段上,且, , 平面.

          1)求證:平面平面

          2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米及其以上空氣質(zhì)量為超標(biāo).

          某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機抽出2,

          (1)求恰有一天空氣質(zhì)量超標(biāo)的概率;

          (2)求至多有一天空氣質(zhì)量超標(biāo)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

          (1)證明:平面PAB⊥平面PAD;

          (2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C1 ,(t為參數(shù))曲線C2 +y2=4.
          (1)在同一平面直角坐標(biāo)系中,將曲線C2上的點按坐標(biāo)變換y′=yx,后得到曲線C′.求曲線C′的普通方程,并寫出它的參數(shù)方程;
          (2)若C1上的點P對應(yīng)的參數(shù)為t= ,Q為C′上的動點,求PQ中點M到直線C3 (t為參數(shù))的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)市場調(diào)查,某商品在過去天內(nèi)的日銷售量(單位:件)和銷售價格(單位:元/件)均為時間的函數(shù),日銷售量近似地滿足,銷售價格近似滿足于,

          (1)試寫出該種商品的日銷售額與時間的函數(shù)關(guān)系式.

          (2)求該種商品的日銷售額的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有 種取法.在這 種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有 種取法;另一類是取出的m個球有m﹣1個白球和1個黑球,共有 種取法.顯然 ,即有等式: 成立.試根據(jù)上述思想化簡下列式子: =

          查看答案和解析>>

          同步練習(xí)冊答案