【題目】如圖,在多面體中,底面
是正方形,梯形
底面
,且
.
(Ⅰ)證明平面平面
;
(Ⅱ)平面將多面體
分成兩部分,求兩部分的體積比.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).
【解析】
(Ⅰ)取的中點(diǎn)
,連接
,可得
,
,即可得
平面
,從而證明平面
平面
;
(Ⅱ)作于
,過(guò)
作
于
,作
,
.
利用多面體的體積
,求得多面體
的體積,進(jìn)而求得
,得到答案.
(Ⅰ)由題意,多面體的底面
是正方形,可得
,
又由梯形底面
,梯形
底面
,
平面
,所以
平面
,
因?yàn)?/span>平面
,所以
,
因?yàn)樘菪?/span>中,
,
取的中點(diǎn)
,連接
,所以
,所以
,
又因?yàn)?/span>,所以
平面
,
又由平面
,所以平面
平面
.
(Ⅱ)如圖所示,作于
,過(guò)
作
于
,作
,
.
∵梯形底面
,且
.
∴面
,
面
,
在中,由
可得
,
令,
則,
,
多面體的體積為:
.
由(1)及對(duì)稱(chēng)性可得平面
,
∵,
,∴
到面
的距離等于
到面
的距離的一半,
即到面
的距離等于
,
故.
∴平面將多面體
分成兩部分,兩部分的體積比為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)n為正整數(shù),稱(chēng)n×n的方格表Tn的網(wǎng)格線的交點(diǎn)(共(n+1)2個(gè)交點(diǎn))為格點(diǎn).現(xiàn)將數(shù)1,2,……,(n+1)2分配給Tn的所有格點(diǎn),使不同的格點(diǎn)分到不同的數(shù).稱(chēng)Tn的一個(gè)1×1格子S為“好方格”,如果從2S的某個(gè)頂點(diǎn)起按逆時(shí)針?lè)较蜃x出的4個(gè)頂點(diǎn)上的數(shù)依次遞增(如圖是將數(shù)1,2,…,9分配給T2的格點(diǎn)的一種方式,其中B、C是好方格,而A、D不是好方格)設(shè)Tn中好方格個(gè)數(shù)的最大值為f(n).
(1)求f(2)的值;
(2)求f(n)關(guān)于正整數(shù)n的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù)且
,若ab∈[-1,1],a+b≠0,有
成立.
(1)判斷函數(shù)在[-1,1]上是增函數(shù)還是減函數(shù),并加以證明.
(2)解不等式.
(3)若對(duì)所有,
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-x2 -kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).
(1)求實(shí)數(shù)k的取值范圍;
(2)證明:f(x)的極大值不小于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為的橢圓
的左頂點(diǎn)為
,左焦點(diǎn)為
,及點(diǎn)
,且
、
、
成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動(dòng)直線
過(guò)點(diǎn)
且與橢圓
相交于
、
兩點(diǎn),記
,線段
上的點(diǎn)
滿(mǎn)足
,試求
(
為坐標(biāo)原點(diǎn))面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)(
,
)的部分圖象如圖中實(shí)線所示,圖中圓C與
的圖象交于M,N兩點(diǎn),且M在y軸上,則下列說(shuō)法中正確的是( )
A.函數(shù)的最小正周期是2π
B.函數(shù)的圖象關(guān)于點(diǎn)
成中心對(duì)稱(chēng)
C.函數(shù)在
單調(diào)遞增
D.將函數(shù)的圖象向左平移
后得到的關(guān)于y軸對(duì)稱(chēng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某建材商場(chǎng)國(guó)慶期間搞促銷(xiāo)活動(dòng),規(guī)定:如果顧客選購(gòu)物品的總金額不超過(guò)600元,則不享受任何折扣優(yōu)惠;如果顧客選購(gòu)物品的總金額超過(guò)600元,則超過(guò)600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.
某人在此商場(chǎng)購(gòu)物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以軸正半軸為極軸.已知曲線的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,射線
,
,
與曲線
分別交于異于極點(diǎn)O的四點(diǎn)A,B,C,D.
(1)若曲線關(guān)于
對(duì)稱(chēng),求
的值,并求
的參數(shù)方程;
(2)若 |,當(dāng)
時(shí),求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)
的距離比到直線
的距離小
,設(shè)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)過(guò)曲線上一點(diǎn)
(
)作兩條直線
,
與曲線
分別交于不同的兩點(diǎn)
,
,若直線
,
的斜率分別為
,
,且
.證明:直線
過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com