日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的焦點(diǎn)為F,過(guò)拋物線上一點(diǎn)P作拋物線的切線交x軸于點(diǎn)D,交y軸于Q點(diǎn),當(dāng)時(shí),.

          (1)判斷的形狀,并求拋物線的方程;

          (2)若兩點(diǎn)在拋物線上,且滿足,其中點(diǎn),若拋物線上存在異于的點(diǎn)H,使得經(jīng)過(guò)三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,求點(diǎn)H的坐標(biāo).

          【答案】(Ⅰ)等腰三角形見(jiàn)解析(Ⅱ)

          【解析】

          試題(1)設(shè)P(x1,y1),求出切線l的方程,求解三角形的頂點(diǎn)坐標(biāo),排除邊長(zhǎng)關(guān)系,然后判斷三角形的形狀,然后求解拋物線方程.

          (2)求出A,B的坐標(biāo)分別為(0,0),(4,4),設(shè)H(x0,y0)(x0≠0,x04),求出AB的中垂線方程,AH的中垂線方程,解得圓心坐標(biāo),由,求解H點(diǎn)坐標(biāo)即可.

          試題解析:

          (1) (1)設(shè)P(x1,y1),

          則切線l的方程為,且,

          所以,所以|FQ|=|FP|,

          所以PFQ為等腰三角形,且D為PQ的中點(diǎn),

          所以DFPQ,因?yàn)?/span>|DF|=2,∠PFD=60°,

          所以QFD=60°,所以,得p=2,

          所以拋物線方程為x2=4y;

          (2)由已知,得A,B的坐標(biāo)分別為(0,0),(4,4),

          設(shè)H(x0,y0)(x0≠0,x0≠4),

          AB的中垂線方程為y=﹣x+4,①AH的中垂線方程為,②

          聯(lián)立①②,解得圓心坐標(biāo)為:

          kNH==,

          ,得,

          因?yàn)閤0≠0,x04,所以x0=﹣2,

          所以H點(diǎn)坐標(biāo)為(﹣2,1).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)是定義在上的奇函數(shù),在上是增函數(shù),且,給出下列結(jié)論,

          ①若,則;

          ②若,則;

          ③若方程內(nèi)恰有四個(gè)不同的實(shí)根, , , ,則或8;

          ④函數(shù)內(nèi)至少有5個(gè)零點(diǎn),至多有13個(gè)零點(diǎn).

          其中結(jié)論正確的有( )

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列四個(gè)結(jié)論:

          (1)若,則恒成立;

          (2)命題“若,則”的逆否命題為“若,則”;

          (3)“命題為真”是“命題為真”的充分不必要條件;

          (4)命題“”的否定是“”.

          其中正確的結(jié)論的個(gè)數(shù)是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn).

          )求;

          )求函數(shù)的單調(diào)區(qū)間;

          )若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實(shí)數(shù)的取值范圍.

          Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

          Ⅲ)求證

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),且.

          (1)求函數(shù)的解析式;

          (2)若對(duì)任意,都有,求的取值范圍;

          (3)證明函數(shù)的圖象在圖象的下方.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD是正方形,PD//MA,MAAD,PM⊥平面CDM,MA=ADPD=1.

          1)求證:平面ABCD⊥平面AMPD

          2)求三棱錐ACMP的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線的焦點(diǎn)是橢圓 )的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線軸上的截距為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在上的奇函數(shù),當(dāng)時(shí),.

          1)求;

          2)當(dāng)時(shí),求的解析式.

          3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案