日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知兩點(diǎn)A(2,3)、B(4,1),直線l:x+2y﹣2=0,在直線l上求一點(diǎn)P.
          (1)使|PA|+|PB|最;
          (2)使|PA|﹣|PB|最大.

          【答案】
          (1)解:可判斷A、B在直線l的同側(cè),設(shè)A點(diǎn)關(guān)于l的對稱點(diǎn)A1的坐標(biāo)為(x1,y1).

          則有 +2 ﹣2=0, (﹣ )=﹣1.

          解得

          x1=﹣ ,

          y1=﹣

          由兩點(diǎn)式求得直線A1B的方程為y= (x﹣4)+1,直線A1B與l的交點(diǎn)可求得為P( ,﹣ ).

          由平面幾何知識可知|PA|+|PB|最小


          (2)解:由兩點(diǎn)式求得直線AB的方程為y﹣1=﹣(x﹣4),即x+y﹣5=0.

          直線AB與l的交點(diǎn)可求得為P(8,﹣3),它使|PA|﹣|PB|最大


          【解析】先判斷A、B與直線l:x+2y﹣2=0的位置關(guān)系,即把點(diǎn)的坐標(biāo)代入x+2y﹣2,看符號相同在同側(cè),相反異側(cè).(1)使|PA|+|PB|最小,如果A、B在l的同側(cè),將其中一點(diǎn)對稱到l的另一側(cè),連線與l的交點(diǎn)即為P; 如果A、B在l的異側(cè),則直接連線求交點(diǎn)P即可.(2)使|PA|﹣|PB|最大.如果A、B在l的同側(cè),則直接連線求交點(diǎn)P即可;
          如果A、B在l的異側(cè),將其中一點(diǎn)對稱到l的另一側(cè),連線與l的交點(diǎn)即為P.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩點(diǎn)式方程的相關(guān)知識可以得到問題的答案,需要掌握直線的兩點(diǎn)式方程:已知兩點(diǎn)其中則:y-y1/y-y2=x-x1/x-x2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛):

          轎車

          轎車

          轎車

          舒適型

          100

          150

          標(biāo)準(zhǔn)型

          300

          450

          600

          按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.

          (I)求的值;

          (II)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;

          (III)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數(shù),設(shè)樣本平均數(shù)為,求的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)直線為曲線處的切線,求實(shí)數(shù);

          (Ⅱ)若,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:參數(shù)方程與極坐標(biāo)系

          在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

          1)求曲線的直角坐標(biāo)方程,并 C的焦點(diǎn)F的直角坐標(biāo);

          2)已知點(diǎn),若直線C相交于A,B兩點(diǎn),且,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)遞增.若a=f(log ),b=f(log ),c=f(﹣2),則a,b,c的大小關(guān)系是(
          A.a>b>c
          B.b>c>a
          C.c>b>a
          D.c>a>b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          1)求不等式的解集;

          2)若,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|﹣2≤x≤5},集合B={x|p+1≤x≤2p﹣1},若A∩B=B,求實(shí)數(shù)p的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解答題。
          (1)求橢圓 的長軸和短軸的長、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).
          (2)求焦點(diǎn)在y軸上,焦距是4,且經(jīng)過點(diǎn)M(3,2)的橢圓的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面為平行四邊形, , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 的中點(diǎn), 在線段上,且

          (Ⅰ)當(dāng)時,證明:平面平面;

          (Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時,求四棱錐的體積.

          查看答案和解析>>

          同步練習(xí)冊答案