日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓)的左右焦點分別為,左右頂點分別為,過右焦點且垂直于長軸的直線交橢圓于兩點,的周長為.點作直線交橢圓于第一象限的點,直線交橢圓于另一點,直線與直線交于點;

          (1)求橢圓的標準方程;

          (2)若的面積為,求直線的方程;

          (3)證明:點在定直線上.

          【答案】(1)(2)(3)見解析

          【解析】

          1)根據(jù)橢圓的性質(zhì),即可由此即可求出橢圓的方程;

          2)分直線MN的斜率存在和不存在兩種情況,利用韋達定理求出弦長,然后再根據(jù)點到直線的距離公式求出高的長度,再根據(jù)的面積為,即可求出結(jié)果;

          3)設(shè),與橢圓聯(lián)立,可得,設(shè),同理可得 ,可得的方程為:,又直線方程過,將代入直線方程,由此可得,因為交于點,所以可得,由此即可求出結(jié)果.

          1,解得:;

          所以橢圓方程為:.

          2)設(shè),①當直線MN斜率存在時:設(shè)MN方程為,聯(lián)立得:

          ,

          ;

          MN直線的距離為,

          ;

          時,MN直線方程過直線MN與橢圓的交點不在第一象限(舍);

          所以MN方程為.

          ②當直線MN斜率不存在時,(舍).

          綜上:直線MN方程為:

          3)設(shè),與橢圓聯(lián)立:,

          同理設(shè),可得

          所以的方程為:以及方程過,將坐標代入可得:, .

          又因為交于P點,即,,將代入得,所以點P在定直線 .

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)處有極值

          1)求的解析式;

          2)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】過點(1,-2)的直線被圓x2y22x2y10截得的弦長為,則直線的斜率為________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,線段、交于點,在的延長線上任取一點,得凸四邊形,求證:、的外接圓三圓共點。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1, 圓心在.

          1)若圓心也在直線上,過點作圓的切線,求切線方程;

          2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

          1)求點P的坐標;

          2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調(diào)查了40名學生,根據(jù)學生的某次物理成績,得到班學生物理成績的頻率分布直方圖和班學生物理成績的頻數(shù)分布條形圖.

          (Ⅰ)估計班學生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);

          (Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認為物理成績與班級有關(guān)?

          物理成績的學生數(shù)

          物理成績的學生數(shù)

          合計

          合計

          附:列聯(lián)表隨機變量;

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,設(shè)橢圓的左、右焦點分別為,點在橢圓上,的面積為

          1)求橢圓的標準方程;

          2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.

          (Ⅰ) 求動圓圓心的軌跡C的方程;

          (Ⅱ) 已知點B(1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, x軸是的角平分線, 證明直線l過定點.

          查看答案和解析>>

          同步練習冊答案