日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)定義在上,對(duì)任意的,且.
          (1)求,并證明:;
          (2)若單調(diào),且.設(shè)向量,對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

          (1) (2)

          解析試題分析:(1)借助于特殊值得,然后把變形
          = 即可,(2) 首先判斷出函數(shù)是增函數(shù),然后找出,代入整理的,最后用分類討論的思想方法求出即可.
          (1)令,又∵,,      2分
          =,
          ,∴.                                  5分
          (2) ∵,且是單調(diào)函數(shù),∴是增函數(shù).       6分
          ,∴由,得
          又∵因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/18/c/16l3v3.png" style="vertical-align:middle;" />是增函數(shù),∴恒成立,.
          .                                        8分
          ,得    (﹡).
          ,∴,即.
          ,              10分
          ①當(dāng),即時(shí),只需,(﹡)成立,
          ,解得;                               11分
          ②當(dāng),即時(shí),只需,(﹡)成立,
          ,解得,∴.              12分
          ③當(dāng),即時(shí),只需,(﹡)成立,
          ,  ∴,                                    13分
          綜上,.                                              14分
          考點(diǎn):抽象函數(shù);函數(shù)的單調(diào)性;向量的數(shù)量積公式;不等式恒成立的問題;分類討論的思想方法.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),且
          (1)求實(shí)數(shù)c的值;
          (2)解不等式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)滿足對(duì)任意的恒有,且當(dāng)時(shí),.
          (1)求的值;
          (2)判斷的單調(diào)性
          (3)若,解不等式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=3x.
          (1)若f(x)=2,求x的值;
          (2)判斷x>0時(shí),f(x)的單調(diào)性;
          (3)若3tf(2t)+mf(t)≥0對(duì)于t∈恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某加油站擬造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長度單位:米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為3千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為千元.
          (1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
          (2)求該儲(chǔ)油罐的建造費(fèi)用最小時(shí)的的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
          (1)求的值及的表達(dá)式;
          (2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小?并求出最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
          (1)求f(x)的解析式;
          (2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.
          (1)求的取值范圍,使在閉區(qū)間上是單調(diào)函數(shù);
          (2)當(dāng)時(shí),函數(shù)的最大值是關(guān)于的函數(shù).求;
          (3)求實(shí)數(shù)的取值范圍,使得對(duì)任意的,恒有成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若對(duì)于區(qū)間內(nèi)的任意,總有成立,求實(shí)數(shù)的取值范圍;
          (2)若函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),求:
          ①實(shí)數(shù)的取值范圍; ②的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案