【題目】已知函數(shù) (其中
為自然對(duì)數(shù)的底數(shù)),若函數(shù)
有4個(gè)零點(diǎn),則
的取值范圍為( )
A. B.
C.
D.
【答案】D
【解析】考查函數(shù),求導(dǎo)可得
,
函數(shù)的定義域?yàn)?/span>
,據(jù)此可得函數(shù)
在區(qū)間
和
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
函數(shù)是定義在
上關(guān)于
軸對(duì)稱的偶函數(shù),
分別對(duì)應(yīng)建立兩個(gè)平面直角坐標(biāo)系,
第一個(gè)坐標(biāo)系按照我們熟悉的坐標(biāo)系繪制函數(shù)的圖像,
第二個(gè)坐標(biāo)系以水平方向?yàn)?/span>軸方向,以豎直方向?yàn)?/span>
軸方向,
在第一個(gè)坐標(biāo)系中繪制函數(shù)的圖像,
在第二個(gè)坐標(biāo)系中繪制函數(shù)的圖像,
如圖所示的直線位置處可以找到滿足題意的方程的四個(gè)零點(diǎn),
函數(shù)零點(diǎn)的值為點(diǎn)處的橫坐標(biāo),
觀察可得, 的取值范圍為
,其中
,題中直線
為臨界條件,
臨界條件處: ,
,
.
結(jié)合選項(xiàng),滿足所得結(jié)論形式的區(qū)間只有D選項(xiàng).
本題選擇D選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱椎中,
是棱
上一點(diǎn),且
,底面
是邊長(zhǎng)為2的正方形,
為正三角形,且平面
平面
,平面
與棱
交于點(diǎn)
.
(1)求證:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓
過點(diǎn)
,且離心率為
.
為
的右焦點(diǎn),
為
上一點(diǎn),
軸,
的半徑為
.
(1)求和
的方程;
(2)若直線與
交于
兩點(diǎn),與
交于
兩點(diǎn),其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績(jī)?cè)?/span>50-70分的頻率是多少
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少:
(3)求成績(jī)?cè)?/span>80-100分的學(xué)生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試后,對(duì)全班同學(xué)的數(shù)學(xué)成績(jī)進(jìn)行整理,得到表:
分?jǐn)?shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計(jì)出本次考試成績(jī)的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB的端點(diǎn)B的坐標(biāo)為(3,0),端點(diǎn)A在圓上運(yùn)動(dòng);
(1)求線段AB中點(diǎn)M的軌跡方程;
(2)過點(diǎn)C(1,1)的直線m與M的軌跡交于G、H兩點(diǎn),求以弦GH為直徑的圓的面積最小值及此時(shí)直線m的方程.
(3)若點(diǎn)C(1,1),且P在M軌跡上運(yùn)動(dòng),求的取值范圍.(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為(
為參數(shù)),點(diǎn)M的直角坐標(biāo)為
.
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的長(zhǎng)軸長(zhǎng)為6,且橢圓
與圓
:
的公共弦長(zhǎng)為
.
(1)求橢圓的方程.
(2)過點(diǎn)作斜率為
的直線
與橢圓
交于兩點(diǎn)
,
,試判斷在
軸上是否存在點(diǎn)
,使得
為以
為底邊的等腰三角形.若存在,求出點(diǎn)
的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com