【題目】如圖,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動點,AB∥OQ,OP與AB交于點B,AC∥OP,OQ與AC交于點C.
(1)當θ=時,求點A的位置,使矩形ABOC的面積最大,并求出這個最大面積;
(2)當θ=時,求點A的位置,使平行四邊形ABOC的面積最大,并求出這個最大面積.
【答案】(1)A點在的中點時,矩形ABOC面積最大,最大面積為
;(2)當A是
的中點時,平行四邊形面積最大,最大面積為
.
【解析】試題分析:(1)若θ=,由題意得OB=cos α,AB=sin α.求得矩形面積S=OB·AB=sin αcos α,即可得最值;
(2)當θ=時,連接OA,設∠AOP=α,過A點作AH⊥OP,垂足為H,
試題解析:
(1)連接OA,設∠AOB=α,
則OB=cos α,AB=sin α.
∴矩形面積S=OB·AB=sin αcos α.
∴S=sin 2α.
由于0<α<,
∴當2α=,即α=
時,S最大=
.
∴A點在的中點時,矩形ABOC面積最大,最大面積為
.
(2)連接OA,設∠AOP=α,過A點作AH⊥OP,垂足為H.在Rt△AOH中,AH=sin α,OH=cos α.
在Rt△ABH中, =tan 60°=
,∴BH=
sin α.
∴OB=OH-BH=cos α-sin α.
設平行四邊形ABOC的面積為S,
則S=OB·AH=sin α
=sin αcos α-sin2α=
sin 2α-
(1-cos 2α)
=sin 2α+
cos 2α-
=
=sin
.
由于0<α<,
∴當2α+,
即α=時,S最大=
.
∴當A是的中點時,平行四邊形面積最大,最大面積為
.
科目:高中數(shù)學 來源: 題型:
【題目】己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC= . (Ⅰ)求角C大小;
(Ⅱ)當c=1時,求ab的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,隔河看兩目標A、B,但不能到達,在岸邊選取相距 km的C、D兩點,并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內),求兩目標A、B之間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等極如下表:
質量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調查數(shù)據(jù) ,能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品90%”的規(guī)定?
(2)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足
,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圓上有四個不同的點到直線
的距離為2,則
的取值范圍是( )
A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線
:
,曲線
:
(
為參數(shù)),以坐標原點
為極點,
軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線,
的極坐標方程;
(Ⅱ)曲線:
(
為參數(shù),
,
)分別交
,
于
,
兩點,當
取何值時,
取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量 =(1,x),
=(2x+3,﹣x)(x∈R).
(1)若 ∥
,求|
|
(2)若 與
夾角為銳角,求x的取值范圍.
(3)若| |=2,求與
垂直的單位向量
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等比數(shù)列{an}中,a2=3,a5=81. (Ⅰ)求an;
(Ⅱ)設bn=log3an , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com